吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (5): 1195-1201.

• • 上一篇    下一篇

基于卷积和Transformer融合的服装分类算法

朱淑畅1, 李文辉2   

  1. 1. 吉林工程技术师范学院 艺术与设计学院, 长春 130052; 2. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2022-07-19 出版日期:2023-09-26 发布日期:2023-09-26
  • 通讯作者: 朱淑畅 E-mail:422820115@qq.com

Clothing Classification Algorithm Based onConvolution and Transformer Fusion

ZHU Shuchang1, LI Wenhui2   

  1. 1. School of Art and Design, Jilin Engineering Normal University, Changchun 130052, China;
    2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2022-07-19 Online:2023-09-26 Published:2023-09-26

摘要: 针对传统基于卷积神经网络的服装分类算法无法满足海量多样服装分类需求的问题, 提出一种卷积注意力融合的服装分类网络. 该网络采用并行结构, 包含一个ResNet分支和一个Transformer分支, 充分利用卷积运算提取的局部特征和自注意力机制提取的全局特征, 以增强网络的表征学习能力, 从而提高服装分类算法的性能和泛化能力. 为验证该方法的有效性, 在数据集Fashion-MNIST和DeepFashion上进行了对比实验. 结果表明: 在数据集Fashion-MNIST上, 该方法取得了93.58%的准确率; 在数据集DeepFashion上, 该方法取得了71.1%的准确率; 该方法优于其他对比方法的实验结果.

关键词: 服装类别分类, 卷积神经网络, 特征融合

Abstract: Aming at  the problem that traditional clothing classification algorithms based on convolutional neural networks could not meet the needs of massive and diverse clothing classification, we  proposed a clothing classification network based on convolutional attention fusion.  The network adopted a parallel structure, including a ResNet branch and a Transformer branch, and  fullly utilizing  the local features extracted by the convolution operation and the global features extracted by the self-attention mechanism to enhance the representation learning ability of the network, thereby improving the performance and generalization ability of the clothing classification algorithm.  In order to verify the effectiveness of the method, we conducted comparative experiments on the Fashion-MNIST and DeepFashion datasets.   The results show that on the Fashion-MNIST dataset, the method achieves an accuracy rate of 93.58%, and on the DeepFashion dataset, the method  achieves an accuracy rate of 71.1%, which is superior to the  experimental results of other methods.

Key words: clothing category classification, convolutional neural network,  , feature fusion

中图分类号: 

  • TP391.41