吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (6): 1305-1312.

• • 上一篇    下一篇

广义齐次核半离散Hilbert型逆向不等式的构造定理及算子表示

洪勇1,2, 赵茜1   

  1. 1. 广州华商学院 应用数学系, 广州 511300; 2. 广东财经大学 统计与数学学院, 广州 510320
  • 收稿日期:2023-02-14 出版日期:2023-11-26 发布日期:2023-11-26
  • 通讯作者: 洪勇 E-mail:hongyonggdcc@yeah.net

Construction Theorem of Semi-discrete Hilbert-Type Inverse Inequality with Generalized Homogeneous Kernel and Operator Representation#br#

HONG Yong1,2, ZHAO Qian1   

  1. 1. Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou 511300, China; 
    2. College of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China
  • Received:2023-02-14 Online:2023-11-26 Published:2023-11-26

摘要: 利用权系数方法和实分析技巧, 讨论具有广义齐次核的半离散Hilbert型逆向不等式的构造问题, 给出构造这类不等式的充分必要条件和最佳常数因子的计算公式以及不等式的算子表示.

关键词: 半离散Hilbert型逆向不等式, 广义齐次核, 构造定理, 充要条件, 最佳常数因子, 积分算子, 离散算子

Abstract: Using the weight coefficient method and real analysis techniques, we discussed the problems of constructing semi-discrete Hilbert-type inverse inequality with generalized homogeneous kernel, gave necessary and sufficient conditions for constructing such inequality,  the calculating formula of the best constant factor, and the  operator expression of the inequality.

Key words: semi-discrete Hilbert-type inverse inequality, generalized homogeneous kernel, construction theorem, necessary and sufficient conditions,  ,  , best constant factor, integral operator, discrete operator

中图分类号: 

  • O178