吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (6): 1419-1424.

• • 上一篇    下一篇

一种基于自注意力信息补偿的服装分类算法

朱淑畅1, 李文辉2   

  1. 1. 吉林工程技术师范学院 艺术与设计学院, 长春 130052;  2. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2023-06-29 出版日期:2023-11-26 发布日期:2023-11-26
  • 通讯作者: 朱淑畅 E-mail:422820115@qq.com

A Clothing Classification Algorithm Based on Self-attention Information Compensation

ZHU Shuchang1, LI Wenhui2   

  1. 1. School of Art and Design, Jilin Engineering Normal University, Changchun 130052, China; 2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2023-06-29 Online:2023-11-26 Published:2023-11-26

摘要: 针对传统基于内容的服装分类对图像特征有较高的要求, 当服装款式较多时, 其准确率难以满足服装分类应用需求的问题, 提出一种基于深度学习方法的平行自注意力分类网络. 该网络在ResNet50的基础上增加了平行自注意力补偿分支, 该分支能提升服装分类任务中的特征提取质量, 逐步补充深层网络缺失的浅层细节信息. 在数据集DeepFashion上进行了对比实验, 实验结果证明了该方法的有效性.

关键词: 服装类别分类, 深度学习, 自注意力机制, 信息补偿

Abstract: Aiming at the problem that traditional content-based clothing classification had high requirements for image features, and its accuracy was difficult to meet the application requirements of clothing classification when there were many clothing styles, we proposed a  parallel self-attention classification network based on deep learning methods. The network added a parallel self-attention compensation branch  on the basis of ResNet50, which could improve the quality of feature extraction in clothing classification tasks, and gradually supplement shallow detail information missing from  deep network. A comparative experiment was carried out on the DeepFashion dataset, and the experimental results proved the effectiveness of this method.

Key words: clothing category classification, deep learning, self-attention mechanism, information compensation

中图分类号: 

  • TP391.41