吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (1): 13-0019.

• • 上一篇    下一篇

拓扑空间中的理想收敛

王武1, 张舜2   

  1. 1. 天津理工大学中环信息学院 基础部, 天津 300380; 2. 天津仁爱学院 数学教学部, 天津 301636
  • 收稿日期:2023-05-09 出版日期:2024-01-26 发布日期:2024-01-26
  • 通讯作者: 王武 E-mail:wangwu@alu.scu.edu.cn

Ideal Convergence in Topological Space

WANG Wu1, ZHANG Shun2   

  1. 1. Department of Foundation, Zhonghuan Information College Tianjin University of Technology, Tianjin 300380, China; 2. Department of Mathematics Teaching, Tianjin Ren’ai College, Tianjin 301636, China
  • Received:2023-05-09 Online:2024-01-26 Published:2024-01-26

摘要: 用理想收敛结构解决定向拓扑的刻画问题, 给出理想S极限和理想广义S极限可拓扑化的充要条件. 结果表明: T0拓扑空间上的定向拓扑、 理想S极限拓扑和理想广义S极限拓扑相同; 定向空间中的理想S收敛是拓扑的当且仅当其为c-空间; 定向空间中理想广义S收敛是拓扑的当且仅当其为局部强紧空间.

关键词: 理想S极限, 理想广义S极限, c-空间, 局部强紧空间, 定向拓扑

Abstract: We used an ideal convergence structure to solve the characterization problem of directed topology, and provided necessary and  sufficient conditions for the topological transformation of ideal S limits and ideal generalized S limits. The results show that the directed topology, the ideal S limit topology and the ideal generalized S limit topology are the same  in T0 topological spaces.  The ideal S convergence in a directed space is topological if and only if it is a c-space. The ideal generalized S convergence in a directed space is topological if and only if it is a locally strongly compact space.

Key words: ideal S limit, ideal generalized S limit, c-space, locally strongly compact space, directed topology

中图分类号: 

  • O153.1