吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (2): 273-0284.

• • 上一篇    下一篇

Stackelberg微分博弈下的鲁棒最优投资-再保险问题

颜炳文1, 陈密1,2, 刘海燕1,2   

  1. 1. 福建师范大学 数学与统计学院, 福州 350117; 2. 福建省分析数学及应用重点实验室, 福州 350117
  • 收稿日期:2023-06-28 出版日期:2024-03-26 发布日期:2024-03-26
  • 通讯作者: 刘海燕 E-mail:rain6397@163.com

Robust Optimal Investment-Reinsurance Problems under  Stackelberg  Differential Game

YAN Bingwen1, CHEN Mi1,2, LIU Haiyan1,2   

  1. 1. School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, China;
    2. Fujian Provincial Key Laboratory of Mathematical Analysis and Applications, Fuzhou 350117, China
  • Received:2023-06-28 Online:2024-03-26 Published:2024-03-26

摘要: 考虑一个以模糊厌恶再保险公司为领导者, 模糊中立保险公司为追随者的Stackelberg随机微分博弈问题. 通过求解拓展的HJB(Hamilton-Jacobi-Bellman)方程组, 给出时间一致性均值-方差准则下的鲁棒最优投资-再保险策略以及相应的值函数. 最后, 通过数值例子和敏感性分析说明最优策略与主要参数之间的关系.

关键词: 比例再保险, 常系数方差弹性模型, Stackelberg微分博弈, 时间一致性均值-方差框架, 模糊厌恶

Abstract: We considered a Stackelberg stochastic differential game problem with an ambiguity-averse reinsurance company as the leader and an ambiguity-neutral insurance company  as the follower. By solving the extended HJB (Hamilton-Jacobi-Bellman) equation systems, we gave the robust optimal investment-reinsurance strategies and the corresponding value function under the time-consistent mean-variance criterion. Finally, we gave some numerical examples and sensitivity analyses to illustrate the relationship between the optimal strategies and the main parameters.

Key words: proportion reinsurance, constant , coefficient variance elasticity model, Stackelberg differential game, time-consistent mean-variance framework,  , ambiguity aversion

中图分类号: 

  • O211.6