吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (2): 381-0390.

• • 上一篇    下一篇

基于随机增强Swin-Tiny Transformer的玉米病害识别及应用

吴叶辉, 李汝嘉, 季荣彪, 李亚东, 孙晓海, 陈娇娇, 杨建平   

  1. 云南农业大学 大数据学院, 昆明 650201
  • 收稿日期:2023-04-24 出版日期:2024-03-26 发布日期:2024-03-26
  • 通讯作者: 杨建平 E-mail:yangjpyn@163.com

Maize Disease Recognition and Application Based on Random Augmentation Swin-Tiny Transformer

WU Yehui, LI Rujia, JI Rongbiao, LI Yadong, SUN Xiaohai, CHEN Jiaojiao, YANG Jianping   

  1. College of Big Data, Yunnan Agricultural University, Kunming 650201, China
  • Received:2023-04-24 Online:2024-03-26 Published:2024-03-26

摘要: 针对图像识别中获取全局特征的局限性及难以提升识别准确性的问题, 提出一种基于随机增强Swin-Tiny Transformer轻量级模型的图像识别方法. 该方法在预处理阶段结合基于随机数据增强(random data augmentation based enhancement, RDABE)算法对图像特征进行增强, 并采用Transformer的自注意力机制, 以获得更全面的高层视觉语义信息. 通过在玉米病害数据集上优化Swin-Tiny Transformer模型并进行参数微调, 在农业领域的玉米病害上验证了该算法的适用性, 实现了更精确的病害检测. 实验结果表明, 基于随机增强的轻量级Swin-Tiny+RDABE模型对玉米病害图像识别准确率达93.586 7%. 在参数权重一致, 与性能优秀的轻量级ransformer、 卷积神经网络(CNN)系列模型对比的实验结果表明, 改进的模型准确率比Swin-Tiny Transformer,Deit3_Small,Vit_Small,Mobilenet_V3
Small,ShufflenetV2和Efficientnet_B1_Pruned模型提高了1.187 7%~4.988 1%, 且能迅速收敛.

关键词: Swin-Tiny Transformer模型, 数据增强, 迁移学习, 玉米病害识别, 图像分类

Abstract: Aiming at the problems of the limitation of obtaining global features in image recognition and the difficulty in improving recognition accuracy, we proposed  an image recognition method based on the lightweight model of random augmentation Swin-Tiny Transformer.  The method combined the random data augmentation based enhancement (RDABE) algorithm to enhance image features in the preprocessing stage, and adopted the Transformer’s self-attention mechanism to obtain more comprehensive 
high-level visual semantic information. By optimizing the Swin-Tiny Transformer model and fine-tuning the parameters on a maize disease dataset, the applicability of the algorithm was verified on maize diseases in the agricultural field, and more accurate disease detection was achieved. The experimental results show that the lightweight Swin-Tiny+RDABE model based on stochastic 
enhancement has an accuracy of 93.586 7% for maize disease image recognition. The experimental results compared with the excellent performance lightweight Transformer and convolutional neural network (CNN) series models with consistent parameter weights show that  the accuracy of the improved model is higher than that of the  Swin-Tiny Transformer, Deit3_Small, Vit Small, 
Mobilenet_V3_Small, ShufflenetV2 and Efficientnet_B1_Pruned models by 1.187 7% to 4.988 1%, and can converge rapidly.

Key words: Swin-Tiny Transformer model, data augmentation, transfer learning, maize disease recognition, image classification

中图分类号: 

  •