吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (2): 410-0416.

• • 上一篇    下一篇

基于WTGWO的无线传感器网络三维部署优化方法

王志强1, 陈力园2, 代蛟3   

  1. 1. 机械工业第九设计研究院股份有限公司, 长春 130011; 2. 中国电信股份有限公司长春分公司, 长春 130033; 3. 一汽解放汽车有限公司, 长春 130011
  • 收稿日期:2023-06-30 出版日期:2024-03-26 发布日期:2024-03-26
  • 通讯作者: 王志强 E-mail:8777412@qq.com

Three-Dimensional  Deployment Optimization Method of Wireless Sensor Network Based on WTGWO

WANG Zhiqiang1, CHEN Liyuan2, DAI Jiao3   

  1. 1. The Ninth Design and Research Institute of Machinery Industry Co., Ltd, Changchun 130011, China;2. Changchun Branch of China Telecom Co., Ltd., Changchun 130033, China; 3. FAW Jiefang Automobile Co., Ltd., Changchun 130011, China
  • Received:2023-06-30 Online:2024-03-26 Published:2024-03-26

摘要: 为优化无线传感器网络的部署问题, 提出一种新的无线传感器网络三维部署优化方法. 在增强灰狼优化算法的基础上, 通过在外层位置更新策略中引入自适应权重方法, 平衡了增强灰狼优化算法开发与勘探之间的搜索. 在马鞍形曲面山坡上进行仿真实验, 实验结果表明, 在50个节点下, 该方法在保证连通的情况下最高覆盖率可达97.58%, 平均覆盖率可达96.74%, 与其他算法相比提高了1.64%~3.87%, 可以有效提升无线传感器网络的覆盖率, 增强无线传感器网络的服务质量.

关键词: 通信工程, 灰狼优化算法, Tent映射, 自适应权重, 无线传感器网络

Abstract: In order to optimize the deployment of wireless sensor networks, we proposed  a new  3D deployment optimization method of wireless sensor networks. On the basis of enhanced gray wolf optimization algorithm, an adaptive weight method was introduced in the outer position update strategy to  balance the search between the development and exploration of the enhanced gray wolf optimization algorithm. Simulation experiments were carried out on the saddle-shaped curved slope, and the experimental results 
show that under 50 nodes, the proposed method can achieve the highest coverage rate of 97.58%, and the average coverage rate can reach 96.74% while ensuring connectivity, which is an increase of 1.64%—3.87% compared with other algorithms. It can effectively improve the coverage of wireless sensor networks and enhance the service quality of wireless sensor networks.

Key words: communication engineering, gray wolf optimization algorithm, Tent mapping, adaptive weight, wireless sensor network

中图分类号: 

  • TP212.9