吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 586-592.

• • 上一篇    下一篇

梯度Ricci-Yamabe孤立子的一些刚性结果

李云超, 刘建成   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2023-07-26 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 刘建成 E-mail:liujc@nwnu.edu.cn

Some Rigidity Results of Gradient Ricci-Yamabe Solitons

LI Yunchao, LIU Jiancheng   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2023-07-26 Online:2024-05-26 Published:2024-05-26

摘要: 应用散度定理及一些Riemann流形上的重要不等式, 并结合几何分析的方法研究紧致梯度Ricci-Yamabe孤立子的刚性问题, 在适当的条件下得到非平凡紧致梯度Ricci-Yamabe孤立子与欧氏球面等距的刚性结果. 此外, 在数量曲率为正的假设下, 证明满足Ln/2-积分拼挤条件的n(4≤n≤6)维紧致梯度收缩Ricci-Yamabe孤立子一定是Einstein流形.

关键词: 梯度Ricci-Yamabe孤立子, 刚性, 积分拼挤条件, 数量曲率

Abstract: By using the divergence theorem and some important inequalities on Riemannian manifolds, combined with  the method of geometric analysis, we studied rigidity problems of compact gradient Ricci-Yamabe solitons, and obtained rigidity result of the nontrivial compact gradient Ricci-Yamabe solitons being equidistant from Euclidean sphere under appropriate conditions. In addition, under the assumption of positive scalar curvature, we proved that n(4≤n≤6) dimensional compact gradient shrinking Ricci-Yamabe solitons that satisfied Ln/2 integral pinched condition must be Einstein manifolds.

Key words: gradient Ricci-Yamabe soliton, rigidity, integral pinched condition, scalar curvature

中图分类号: 

  • O186.12