吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 606-614.

• • 上一篇    下一篇

基于消融分析的卷积神经网络可解释性分析

李绍轩, 杨有龙   

  1. 西安电子科技大学 数学与统计学院, 西安 710126
  • 收稿日期:2023-02-14 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 杨有龙 E-mail:ylyang@mail.xidian.edu.cn

Interpretability Analysis of Convolutional Neural Networks Based on Ablation Analysis

LI Shaoxuan, YANG Youlong   

  1. School of Mathematics and Statistics, Xidian University, Xi’an 710126, China
  • Received:2023-02-14 Online:2024-05-26 Published:2024-05-26

摘要: 针对基于类激活映射(CAM)的可解释性方法因受到与目标类别无关特征的干扰, 导致可视化结果中含有较多噪声及对目标物体定位精度较低的问题, 提出一种基于消融分析的卷积神经网络(CNN)可视化方法. 先通过消融实验考察深层网络特征与目标类别的相关性并计算特征融合权重; 再通过ReLU或Softmax函数对融合权重进行修正, 以减少无关特征的干扰, 得到定位精度更高的类激活图, 从而对网络决策做出有效说明. 在验证集ILSVRC 2012上使用多种评估指标进行验证, 实验结果表明, 该方法在各项指标上均取得了更好的模型解释能力.

关键词: 可解释性, 卷积神经网络, 消融分析, 深度学习

Abstract: Aiming at the problem that the interpretable method based on class activation mapping (CAM) was disturbed by features unrelated to the target class, which led to more noise in the visualization results and lower localization accuracy of target objects, we proposed a convolutional neural network (CNN) visualization method based on ablation analysis. Firstly, the correlation between deep network features and target classes was investigated and feature fusion weights were calculated through ablation experiments. Secondly,  the feature fusion weights were corrected by ReLU or Softmax functions to reduce the interference of irrelevant features and obtain  class activation map with higher localization accuracy, so as to make an effective description of network decisions. A variety of evaluation metrics were used for verification on the ILSVRC 2012 validation set, the experimental results show that the method achieves better model interpretation capability in all indicators.

Key words: interpretability, convolutional neural network, ablation analysis, deep learning

中图分类号: 

  • TP391