吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 809-820.

• • 上一篇    下一篇

一类PDGF诱导的肿瘤模型的动力学性质分析

鄂玺琪, 魏新, 赵建涛   

  1. 黑龙江大学 数学科学学院, 哈尔滨 150080
  • 收稿日期:2023-11-13 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 赵建涛 E-mail:zhaojt@hlju.edu.cn

Dynamical Properties Analysis of a Class of PDGF-Induced Tumor Models

E Xiqi, WEI Xin, ZHAO Jiantao   

  1. School of Mathematical Science, Heilongjiang University, Harbin 150080, China
  • Received:2023-11-13 Online:2024-07-26 Published:2024-07-26

摘要: 考虑一个以血小板源性生长因子(PDGF)驱动的反应扩散神经胶质瘤数学模型. 首先, 对常微分系统给出其平衡点的稳定性分析, 以趋化
剂产生的速率m作为分支参数给出正平衡点附近Hopf分支的存在性, 并通过规范型理论和中心流形定理给出判断由Hopf 分支产生的周期解稳定性公式; 其次, 对反应扩散系统, 得到当扩散介入后平衡点不会发生Turing不稳定性; 最后, 通过数值模拟验证理论分析结果. 结果表明, 趋化剂产生的速率m可区分神经胶质瘤的类型.

关键词: 肿瘤模型, 反应扩散, Hopf分支, 稳定性

Abstract: We considered a platelet derived growth factor (PDGF) driven reaction-diffusion glioma mathematical model. Firstly, we gave the stability analysis of the equilibrium point for the ordinary differential system. We took the  rate m generated by chemoattractant as  the bifurcation parameter, gave the existence of the Hopf bifurcation near the positive equilibrium point, and then gave a formula to judge the stability of the periodic solution produced by the Hopf bifurcation through the gauge type theory and the central manifold theorem. Secondly, for reaction-diffusion systems, we obtained that the equilibrium point  did not occur Turing instability  when diffusion was involved. Finally, the  theoretical analysis results were verified through numerical simulation. The results show that the rate m generated by chemoattractant can be used to distinguish the types of glioma.

Key words: tumor model, reaction diffusion, Hopf bifurcation, stability

中图分类号: 

  • O175.21