吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 831-841.

• • 上一篇    下一篇

 临界点理论在分数阶微分方程边值问题中的应用

秦锐珍, 周文学, 曹美丽   

  1. 兰州交通大学 数理学院, 兰州 730070
  • 收稿日期:2023-10-13 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 周文学 E-mail:wxzhou2006@126.com

Applications of Critical Point Theory to Boundary Value Problems of Fractional Differential Equations

QIN Ruizhen, ZHOU Wenxue, CAO Meili   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2023-10-13 Online:2024-07-26 Published:2024-07-26

摘要: 用临界点理论和变分法研究Banach空间中带Sturm-Liouville边值条件的Caputo型分数阶微分方程解的存在性. 通过定义适当的分数阶导数空间, 将分数阶微分方程边值问题解的存在性转化为寻找定义在某个空间上对应泛函的临界点, 得到了该边值问题存在一系列无界的广义解.

关键词: Sturm-Liouville边值条件, 临界点理论, 变分法, 不连续分数阶导数

Abstract: The critical point theory and the variational method were used to study the existence of the solution for the Caputo type fractional differential equation with the Sturm-Liouville boundary condition in Banach space. By defining the appropriate fractional derivative space, the existence of the solution to the boundary value problem of fractional differential equation was transformed into finding the critical point defined as the corresponding functional in a certain space, and a series of unbounded generalized solutions to the boundary value problem were obtained.

Key words: Sturm-Liouville boundary condition, critical point theory, variational method, discontinuous fractional derivative

中图分类号: 

  • O175.8