吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 971-979.

• • 上一篇    下一篇

耦合Rulkov神经元的复杂动力学行为

薛睿1, 张莉2, 安新磊1   

  1. 1. 兰州交通大学 数理学院, 兰州 730070; 2. 兰州工业学院 基础科学部, 兰州 730050
  • 收稿日期:2023-09-14 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 薛睿 E-mail:417254177@qq.com

Complex Dynamic Behavior of Coupled Rulkov Neurons

XUE Rui1, ZHANG Li2, AN Xinlei1   

  1. 1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. Department of the Basic Courses,  Lanzhou Institute of Technology, Lanzhou 730050, China
  • Received:2023-09-14 Online:2024-07-26 Published:2024-07-26

摘要: 基于混沌的Rulkov神经元模型, 考虑2个相同神经元在电耦合下的情形, 通过数值计算对耦合Rulkov神经元模型进行双参数分岔分析, 并借助单参数分岔图以及最大Lyapunov指数图进一步验证其分岔模式. 结果表明: 耦合Rulkov神经元模型呈倍周期分岔道路、 拟周期道路以及阵发性道路3条典型的混沌路径; 该模型具有伴有混沌的加周期分岔现象; 随着耦合强度的增加, 耦合Rulkov模型呈更复杂的动力学行为.

关键词: Rulkov神经元, 电耦合, 双参数分岔分析, 最大Lyapunov指数, 混沌道路

Abstract: Based on the chaotic Rulkov neuron model, the two-parameter bifurcation analysis of the coupled Rulkov neuron model was carried out through numerical calculations  by considering the situation of two identical neurons under electrical coupling, and the bifurcation mode was further validated by using the one-parameter bifurcation diagrams and the maximum Lyapunov exponent diagrams. The results show that the coupled Rulkov neuron model exhibits three classic chaotic paths: period-doubling bifurcation path, quasi-periodic bifurcation path, and intermittency path. The model presents a period-adding bifurcation phenomena accompanied by chaos. The coupled Rulkov neurons model exhibits more complex dynamical behavior as the coupling strength increases.

Key words: Rulkov neuron, electrical coupling, two-parameter bifurcation analysis, the maximum Lyapunov exponent, chaotic path

中图分类号: 

  •