吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1102-1112.

• • 上一篇    下一篇

 分位回归基于最优去相关得分的子抽样算法

黄小峰, 邹雨浩, 袁晓惠   

  1. 长春工业大学 数学与统计学院, 长春 130012
  • 收稿日期:2024-03-22 出版日期:2024-09-26 发布日期:2024-09-21
  • 通讯作者: 袁晓惠 E-mail:yuanxh@ccut.edu.cn

Subsampling Algorithm for Quantile Regression Based on Optimal Decorrelation Score

HUANG Xiaofeng, ZOU Yuhao, YUAN Xiaohui   

  1. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
  • Received:2024-03-22 Online:2024-09-26 Published:2024-09-21

摘要: 针对海量数据下高维分位回归模型, 首先, 构造基于去相关得分函数的子抽样算法, 以估计感兴趣的低维参数; 其次, 推导所提估计的极限分布, 并根据渐近协方差矩阵求出L-最优准则下的子抽样概率, 给出高效的两步算法. 模拟和实证分析结果表明, 最优子抽样方法显著优于均匀子抽样方法.

关键词: 去相关得分, 高维, 海量数据, 分位回归, 子抽样

Abstract: For the high-dimensional quantile regression model with massive data, firstly, a subsampling algorithm based on the decorrelation score function was constructed to estimate the low-dimensional parameters of interest. Secondly, we derived the limit distribution of the proposed estimates and calculated the subsampling probability under the L-optimal criterion according to the asymptotic covariance matrix, giving an efficient two-step algorithm. The simulation and empirical analysis results show that the  optimal subsampling method is significantly superior to  the uniform subsampling method.

Key words: decorrelation score, high-dimensional, massive data, quantile regression, subsampling

中图分类号: 

  •