吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1113-1121.

• • 上一篇    下一篇

 抛物方程的Landweber迭代正则化方法的后验误差估计

申钰, 熊向团   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2023-10-25 出版日期:2024-09-26 发布日期:2024-09-26
  • 通讯作者: 熊向团 E-mail:xiangtuanxion@nwnu.edu.cn

Posterior Error Estimation of Landweber Iterative Regularization Method for Parabolic Equations

SHEN Yu, XIONG Xiangtuan   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2023-10-25 Online:2024-09-26 Published:2024-09-26

摘要: 考虑二维抛物方程Cauchy问题的反问题, 该问题是严重不适定的. 首先, 用Landweber迭代正则化方法得到该问题的一个正则近似解, 用Fourier变换求出该问题的精确解; 其次, 在后验正则化参数的选取规则下, 给出精确解和正则解之间的Holder型误差估计, 并使用更强的先验条件给出端点x=1处的误差估计;最后, 给出数值实例说明该方法的有效性. 结果表明, 该方法比已有方法收敛速度更快.

关键词: Cauchy问题, 不适定问题, Landweber迭代正则化, 误差估计, 后验估计

Abstract: We considered the inverse problem of Cauchy problem of two dimensional parabolic equations, which was seriously ill-posed. Firstly, a regular approximate solution of the problem was obtained by using Landweber iterative regularization method, and  Fourier transform was used to obtain  the exact solution of the problem. Secondly, the Holder type error estimation between the exact solution and the regular solution was given under the selection rules of the posterior regularization parameters, and stronger prior conditions were used to give  the error estimation at the end point x=1. Finally, numerical examples were given to demonstrate the effectiveness of the proposed method. The results show that the proposed method has a faster  convergence rate than existing methods.

Key words: Cauchy problem, ill-posed problem, Landweber iterative regularization, error estimation, posterior estimation

中图分类号: 

  • O241