吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (6): 1363-1369.

• • 上一篇    下一篇

Bayes推断和神经网络求解美式回望期权的隐含波动率

陶李1, 朱本喜2, 钱译缘2, 徐嘉琪2   

  1. 1. 海南大学 国际商学院, 海口 570228; 2. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2024-06-05 出版日期:2024-11-26 发布日期:2024-11-26
  • 通讯作者: 钱译缘 E-mail:qianyy21@mails.jlu.edu.cn

Solving  Implied Volatility of American Lookback Options by Bayesian Inference and Neural Network

TAO Li1, ZHU Benxi2, QIAN Yiyuan2, XU Jiaqi2   

  1. 1. College of International Business, Hainan University, Haikou 570228, China;
    2. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2024-06-05 Online:2024-11-26 Published:2024-11-26

摘要: 首先, 用原始对偶活跃集方法求解期权定价正问题, 将相应的数值解作为监督学习的输出, 然后用训练好的神经网络替代期权定价正问题模型. 其次, 结合Bayes推断与神经网络进行Metropolis-Hastings采样, 求解隐含波动率反问题. 该方法减少了采样过程中正问题计算量庞大的问题, 从而加速了反问题求解过程.

关键词: 隐含波动率, Bayes推断, 神经网络, 替代模型

Abstract: Firstly,  we used the original dual active set method to solve the forward problem of option pricing, with the corresponding numerical solutions as the output for supervised learning, and then replaced the  forward problem model of option pricing with a well-trained neural network. Secondly, we combined Bayesian inference with neural networks for Metropolis-Hastings sampling  to solve the inverse problem of implied volatility. This method reduced the problem of large computational complexity  of the forward problem during the sampling process, thereby accelerating the solution process for the inverse problem.

Key words: implied volatility, Bayesian inference, neural network, surrogated model

中图分类号: 

  • O241.8