吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (1): 9-0014.

• • 上一篇    下一篇

超线性阻尼项和Kirchhoff项对解衰减速率的影响

李仲庆1, 郭斌2, 高文杰2   

  1. 1. 贵州财经大学 数学与统计学院, 贵阳 550025; 2. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2024-12-02 出版日期:2025-01-26 发布日期:2025-01-26
  • 通讯作者: 高文杰 E-mail:wjgao@jlu.edu.cn

Effect of Superlinear Damping Term and Kirchhoff Term to  Decay Rate of Solutions

LI Zhongqing1, GUO Bin2, GAO Wenjie2   

  1. 1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China;
    2. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2024-12-02 Online:2025-01-26 Published:2025-01-26

摘要: 考虑一类具Kirchhoff项的非局部波动方程解的衰减速率. 首先, 通过对解Sobolev范数建立加权估计, 克服超临界阻尼项带来经典乘子法失效的困难. 其次, 利用加权乘子法证明当阻尼项为超临界阻尼时, 所研究问题能量泛函为对数衰减, 完全不同于线性阻尼的指数衰减和次临界阻尼的多项式衰减.

关键词: 非局部方程, 加权乘子法, 衰减估计

Abstract: We considered  the decay rate of solutions to a class of nonlocal wave equations with  Kirchhoff term. Firstly, by establishing weighted estimates of the Sobolev norm, the difficulty of classical multiplier method failure caused by  supercritical damping term could be overcome. Secondly, by using  the weighted multiplier method to prove that the energy functional of the studied  problem decayed  logarithmically when  the damping term was supercritical damping,  which was  totally different from both exponential decay of linear damping and polynomial decay of subcritical damping.

Key words: nonlocal equation, weighted multiplier method, decay estimate

中图分类号: 

  • O175.27