吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (1): 107-0113.

• • 上一篇    下一篇

基于语义特征提取的隐式情感分析方法

丛眸1, 彭涛1,2, 朱蓓蓓1   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012; 2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2023-12-29 出版日期:2025-01-26 发布日期:2025-01-26
  • 通讯作者: 彭涛 E-mail:tpeng@jlu.edu.cn

Implicit Sentiment Analysis Method Based on Semantic Feature Extraction

CONG Mou1, PENG Tao1,2, ZHU Beibei1   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2023-12-29 Online:2025-01-26 Published:2025-01-26

摘要: 针对目前隐式情感语句中情感词不明显或较少、 表达方式委婉等问题, 提出一种基于语义特征提取的隐式情感分析方法. 该方法通过引入与隐式情感语句相关的事实信息作为辅助特征, 并利用RoBERTa预训练模型对文本及其辅助特征进行深度语义交互, 以获取全局特征;同时, 采用双向门控循环单元(BiGRU)捕捉局部特征, 最后结合注意力池化技术计算情感权重, 从而更准确地识别和理解隐含的情感信息. 在数据集Snopes和PolitiFact上进行仿真实验, 实验结果表明, 该方法在隐式情感分析方面性能优异, 不仅在多个评价指标上超越了现有方法, 且整体性能得到显著提升, 为更广泛的情感分析应用场景提供了有效的解决方案, 特别是在处理复杂和间接表达的情感内容时, 具有重要的应用价值和意义.

关键词: 语义特征, 隐式情感分析, 双向门控循环单元, 注意力池化

Abstract: Aiming at the problems of   less obvious or fewer sentiment words and euphemistic expressions in current implicit sentiment statements, we proposed an implicit sentiment analysis method based on semantic feature extraction. The method  introduced factual information related to implicit sentiment statements as auxiliary features, and used RoBERTa pre-training model to perform deep semantic interaction between the text and its auxiliary features in order to obtain global features. At the same time, a bidirectional gated recurrent unit (BiGRU) was used to capture local features, and finally, the sentiment weight was calculated by combining with attention pooling technique, so as to identify and understand the implicit sentiment information more accurately. The simulation experiments were conducted on  Snopes and PolitiFact datasets, and the results show  that the method has excellent performance  in implicit sentiment analysis. It not only surpasses existing methods in multiple evaluation metrics, but also significantly improves the overall performance, providing an effective solution for a wider range of sentiment analysis application scenarios, especially when dealing with complex and indirectly expressed sentiment content, it has important application value and significance.

Key words: semantic feature, implicit sentiment analysis, bidirectional gated recurrent unit, attention pooling

中图分类号: 

  • TP391.43