吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (1): 114-0123.

• • 上一篇    下一篇

足够接近的旅行商问题研究综述

史丰源1, 欧阳丹彤1,2, 张立明1,2   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2024-12-05 出版日期:2025-01-26 发布日期:2025-01-26
  • 通讯作者: 欧阳丹彤 E-mail:ouyd@jlu.edu.cn

Research  Review of  Close Enough Traveling Salesman Problem

SHI Fengyuan1, OUYANG Dantong1,2, ZHANG Liming1,2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2024-12-05 Online:2025-01-26 Published:2025-01-26

摘要: 考虑组合优化问题中的经典问题旅行商问题(traveling salesman problem, TSP)的变体——足够接近的旅行商问题(close-enough traveling salesman problem, CETSP). 首先, 综合介绍TSP和CETSP的历史、 求解方法和算法, 包括精确算法(如分支定界法、 线性规划)和启发式算法(如粒子群优化、 贪心算法等). TSP要求在给定城市列表和距离的条件下, 找到访问每座城市一次并回到起点的最短路径. CETSP是TSP的推广, 允许在每个目标的邻域内选择任意点进行访问, 而非精确位置, 适用于可容忍误差的实际应用, 如物流配送、 智能交通、 无线传感器网络等. CETSP具有更高的灵活性和适应性, 可大幅度减少计算资源和时间消耗, 特别在大规模问题中有更大优势. 其次, 介绍CETSP在实际应用中的潜力, 尤其在物流、 工业制造、 交通规划、 信息通讯等领域, 为提高效率、 降低成本、 推动智能化决策提供了有效解决方案. 最后, 指出了CETSP的一些未来研究方向.

关键词: 足够接近的旅行商问题, 启发式算法, 路径规划, 模型应用

Abstract: We consider a variant of the classic problem of  the traveling salesman problem (TSP) in combinatorial optimization problem: 
 the close enough traveling salesman problem (CETSP).  Firstly, we comprehensively introduce the history, solving methods, and algorithms for both TSP and CETSP, including exact algorithms (such as branch and bound method, linear programming) and heuristic algorithms (such as particle swarm optimization, greedy algorithms, etc.). The TSP requires finding the shortest path to visit each city  once and return to the starting point given a list of cities and distances. CETSP is a generalization of TSP, allowing the visiting point for each target to be chosen from within a specified neighborhood, rather than  exact location. It is  suitable for practical applications that can  tolerate errors, such as logistics distribution, intelligent transportation, and wireless sensor networks, etc. CETSP has higher flexibility and adaptability, which can significantly reduce computational resources and time consumption, particularly for large-scale problems with greater advantages. Secondly, we introduce  the potential  of CETSP in practical applications, especially in logistics, industrial manufacturing, traffic planning, information and communication, offering effective solutions for improving efficiency, reducing costs, and promoting intelligent decision-making. Finally, we have identified some future research directions for CETSP.

Key words:  , close enough traveling salesman problem, heuristic algorithm, path planning, model application

中图分类号: 

  • TP301.6