吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (2): 307-0320.

• • 上一篇    下一篇

一类具有隔离的随机埃博拉传染病模型动力学分析

李录苹, 孔丽丽, 王晓玲, 陈富   

  1. 山西大同大学 数学与统计学院, 山西 大同 037009
  • 收稿日期:2024-07-04 出版日期:2025-03-26 发布日期:2025-03-26
  • 通讯作者: 李录苹 E-mail:sxdtdxllp@163.com

Dynamics Analysis of a Stochastic Ebola Infectious Disease Model with Isolation

LI Luping, KONG Lili, WANG Xiaoling, CHEN Fu   

  1. School of Mathematics and Statistics, Shanxi Datong University, Datong 037009, Shanxi Province, China
  • Received:2024-07-04 Online:2025-03-26 Published:2025-03-26

摘要: 利用随机微分方程理论, 讨论具有隔离仓室和动物仓室的埃博拉传染病模型, 给出该模型动物子系统染病动物灭绝与持久之间的阈值以及动物-人整体系统疾病持久性的条件, 并证明系统存在遍历平稳分布. 最后, 对理论结果进行数值模拟, 结果表明, 扰动强度较小时会形成地方病, 扰动强度足够大时可导致疾病灭绝.

关键词: 埃博拉病毒, Lyapunov函数, Ito公式, 平稳分布

Abstract: Using the theory of stochastic differential equations, we discussed  an Ebola infectious disease model with isolated compartments and animal compartments. We gave the threshold between extinction and persistence of infected animals within the animal subsystem of the model, as well as the conditions for persistence of the disease in the overall animal-human system, and proved the existence of  ergodic stationary distribution in the system. Finally, numerical simulations were conducted to validate the theoretical results. The  results show that it can form endemic diseases when the disturbance intensity is small, and it can lead to the extinction of disease when the disturbance intensity is large enough.

Key words: Ebola virus, Lyapunov function, Ito formula, stationary distribution

中图分类号: 

  • O175.1