吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (2): 437-0444.

• • 上一篇    下一篇

基于轻量级注意力残差网络的面部表情识别方法

郜高飞, 邵党国, 马磊, 易三莉   

  1. 昆明理工大学 信息工程与自动化学院, 云南省计算机技术应用重点实验室, 昆明 650504
  • 收稿日期:2023-11-03 出版日期:2025-03-26 发布日期:2025-03-26
  • 通讯作者: 邵党国 E-mail:orangebear152@gmail.com

Facial Expression Recognition Method Based on Lightweight Attention Residual Network

GAO Gaofei, SHAO Dangguo, MA Lei, YI Sanli   

  1. (Yunnan Key Laboratory of Computer Technologies Application, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
  • Received:2023-11-03 Online:2025-03-26 Published:2025-03-26

摘要: 针对卷积神经网络参数量大、 训练时间长的问题, 提出一种基于轻量级注意力残差网络的面部表情识别方法. 首先, 以残差网络为骨架重新搭建模型, 通过减少层数并改进残差模块提高模型性能; 其次, 引入深度可分离卷积减少模型的参数量和计算工作量; 最后, 采用Mish函数替代ReLU函数的挤压激励模块自适应地调整通道权重. 该模型在两个公共数据集CK+和JAFFE上采用经典的十折交叉验证方式进行验证, 分别获得了98.16%和96.67%的准确率. 实验结果表明, 该方法在模型识别精度和复杂度之间进行了较好权衡.

关键词: 面部表情识别, 轻量级, 残差网络, 深度可分离卷积, 注意力机制

Abstract: Aiming at the problems of a large number of parameters and the long training time of convolutional neural networks, we proposed
 a facial expression recognition method based on a lightweight attention residual network. Firstly, we rebuilt the model by using  the residual network as a skeleton, and  improved the model performance by reducing the number of layers and improving the residual module. Secondly, the depthwise separable convolution was introduced to reduce the number of model parameters and computational effort. Finally, the squeeze and excitation module of ReLU function was replaced by Mish function to adaptively 
adjust the channel weight. The model was validated by using the classical ten-fold cross-validation mode on two public datasets CK+ and JAFFE,  and obtained  accuracies of 98.16% and 96.67%, respectively. The experimental results show that the proposed method provides a better trade-off between model identification accuracy and complexity.

Key words: facial expression recognition, lightweight, residual network, depthwise separable convolution, attention mechanism

中图分类号: 

  • TP391.41