吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1313-1324.

• • 上一篇    下一篇

混频数据分位回归模型的Bayes分析

董小刚, 叶盼盼, 袁晓惠, 孙长智   

  1. 长春工业大学 数学与统计学院, 长春 130012
  • 收稿日期:2024-12-02 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 孙长智 E-mail:chzhsun@jlu.edu.cn

Bayesian Analysis of Quantile Regression Model for Mixed Frequency Data

DONG Xiaogang, YE Panpan, YUAN Xiaohui, SUN Changzhi   

  1. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
  • Received:2024-12-02 Online:2025-09-26 Published:2025-09-26

摘要: 针对混频数据的建模问题, 提出自回归U-MIDAS(unrestricted mixed data sampling)分位回归模型. 首先, 结合嵌套Lasso惩罚方法及spike-and-slab先验进行Bayes参数估计和变量选择; 其次, 通过数值模拟证明该方法的优越性; 最后, 将该方法用于美国名义国内生产总值(GDP)年化季度增长率的预测, 结果表明, 该方法预测精度较好.

关键词: 混频数据, 自回归U-MIDAS分位回归模型, Bayes分析, 嵌套Lasso惩罚

Abstract: Aiming at the problem of modeling mixed frequency data, we proposed an autoregressive U-MIDAS (unrestricted mixed data sampling) quantile regression model. Firstly, we combined the nested Lasso penalty method and  the spike-and-slab prior for Bayesian parameter estimation and variable selection. Secondly, the superiority of this method was proved by numerical simulations. Finally, this method was applied to predict the annualized quarterly growth rate of  nominal gross domestic product (GDP) in the United States. The results show that the proposed method has  good prediction accuracy.

Key words: mixed frequency data, autoregressive U-MIDAS quantile regression model, Bayesian analysis, nested Lasso penalty

中图分类号: 

  • O212.8