吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1397-1403.

• • 上一篇    下一篇

基于循环神经网络与注意力机制的波动预测模型

李希今1, 王祥任2,3, 刘金石1   

  1. 1. 吉林大学 人力资源处, 长春 130012; 2. 内蒙古大学 计算机学院(软件学院), 呼和浩特 010021; 3. 内蒙古大学 人工智能学院, 呼和浩特 010021
  • 收稿日期:2024-09-23 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 李希今 E-mail:lxj0907@jlu.edu.cn

Fluctuation Prediction Model Based on Recurrent Neural Network and Attention Mechanism

LI Xijin1, WANG Xiangren2,3, LIU Jinshi1   

  1. 1. Human Resource Department, Jilin University, Changchun 130012, China;2. College of Computer Science (College of Software), Inner Mongolia University, Hohhot 010021, China; 3. College of Artificial Intelligence, Inner Mongolia University, Hohhot 010021, China
  • Received:2024-09-23 Online:2025-09-26 Published:2025-09-26

摘要: 针对经典机器学习算法(如决策树、 随机森林)在建模复杂隐式交互关系时预测准确率较低的问题, 提出一个基于循环神经网络与注意力机制的波动预测模型. 首先通过注意力机制计算各影响因素之间复杂的交互关系, 然后采用循环神经网络学习表示模型的隐变量, 从而实现精准预测. 与多个经典预测模型进行仿真对比实验的结果表明, 该模型的预测准确率显著高于其他机器学习模型, 从而为波动预测领域提供了一种更高效、 精准的解决方案.

关键词: 循环神经网络, 注意力机制, 机器学习, 预测模型

Abstract: Aiming at the problem of low prediction accuracy when classical machine learning algorithms (e.g., decision trees, random forests) modelled complex implicit interaction relationships, we proposed a fluctuation  prediction model based on recurrent neural networks and an attention mechanism. We first calculated the complex interaction relationships among various  influencing factors through the attention mechanism, and then used  recurrent neural networks to learn the hidden variable representations of the model, thereby achieving precise prediction. The results of simulation and comparative experiments with multiple classical prediction models show that the  prediction accuracy of proposed model is significantly higher than other machine learning models,  providing a more efficient and accurate solution for the field of volatility prediction.

Key words:  , recurrent neural network,  , attention mechanism, machine learning, prediction model

中图分类号: 

  • TP183