吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1411-1417.

• • 上一篇    下一篇

基于复杂网络聚类算法的用户学习行为动态演化模型

刘俊娟, 闫培玲, 肖俊生, 王林景   

  1. 河南中医药大学 信息技术学院, 郑州 450046
  • 收稿日期:2024-08-27 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 刘俊娟 E-mail:l_juanll8@163.com

Dynamic Evolution Model of User Learning Behavior Based on Complex Network Clustering Algorithm

LIU Junjuan, YAN Peiling, XIAO Junsheng, WANG Linjing   

  1. School of Information Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China
  • Received:2024-08-27 Online:2025-09-26 Published:2025-09-26

摘要: 为深入了解用户的学习习惯和发展趋势, 根据用户需求和行为动态合理地调整教育资源, 提出一个基于复杂网络聚类算法的用户学习行为动态演化模型. 首先, 设计复杂网络聚类模型, 得到用户学习行为社区; 其次, 通过语义二值获得数据关联规则分布, 利用多元回归方法挖掘关联规则, 得到用户学习行为特征分布模型; 最后, 在门控递归单元网络中添加注意力机制, 获得用户学习行为兴趣特征, 并以此为输入量, 得到动态演化模型. 实验结果表明, 该方法可有效区分学习社区中用户感兴趣和不感兴趣的行为数据; AUC值更接近于1, 表明该方法的性能更好, 实用性更强.

关键词: 复杂网络, 社区挖掘, 数据聚类算法, 注意力机制, 学习行为分析, 动态演化

Abstract: In order to gain a deeper understanding of users’ learning habits and development trends, and to dynamically adjust educational resources based on user needs and behaviors, we proposed a  dynamic evolution model of user learning behavior based on complex network clustering algorithm. Firstly, we designed a complex network clustering model to obtain the user learning behavior community. Secondly, we obtained  the distribution of data association rules through semantic binary analysis, and used  multiple regression methods to mine the association rules,  obtaining a user learning behavior feature distribution model. Finally, we obtained user learning behavior interest features, which were used as input to obtain a dynamic evolution model by adding  attention mechanism  to the gated recurrent unit network.  The experimental results show that the proposed method can effectively distinguish between behavior data that users in the learning community are interested in and not interested in. The AUC value is closer to 1, indicating that the proposed method has better performance and stronger practicality.

Key words: complex network, community excavation, data clustering algorithm, attention mechanism, analysis of learning behavior, dynamic evolution

中图分类号: 

  • TP391