吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1437-1446.

• • 上一篇    下一篇

基于特征分离和全局上下文的红外小目标检测方法

任勇1,2, 朵琳1   

  1. 1. 昆明理工大学 信息工程与自动化学院, 昆明 650500; 2. 重庆电力高等专科学校 电气工程学院, 重庆 400053
  • 收稿日期:2024-06-11 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 朵琳 E-mail:duolin2003@126.com

Infrared Small Target Detection Method Based on Feature Separation and Global Context

REN Yong1,2, DUO Lin1   

  1. 1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China; 
    2. School of Electrical Engineering, Chongqing Electric Power College, Chongqing 400053, China
  • Received:2024-06-11 Online:2025-09-26 Published:2025-09-26

摘要: 针对基于单帧红外小目标检测存在的难题, 提出一种基于特征分离和全局上下文的红外小目标检测方法. 首先, 针对小目标特征不足的问题, 设计特征分离模块, 通过中心差分卷积捕获目标背景对比度差异, 结合快速Fourier卷积提取边缘梯度信息, 实现目标特征与背景噪声的高效分离. 其次, 针对下采样导致特征丢失的问题, 构建全局上下文提取模块, 对深层特征进行跨尺度全局建模, 防止目标特征在网络深层丢失. 在多个公开数据集上的实验结果表明, 该方法较AGPCNet,DNANet等先进算法在mIoU,nIoU和F1指标上提升明显, 优化了红外小目标检测算法性能, 提升了复杂场景的感知能力.

关键词: 小目标检测, 红外图像, 中心差分卷积, 特征自适应, 深度学习

Abstract: Aiming at the challenges of single-frame infrared small target detection, we proposed an infrared small target detection method based on feature separation and global context. Firstly, aiming at the problem of insufficient features of small targets, we designed a feature separation module that captured the difference of target background contrast  by central differentical convolution, and combined  fast Fourier convolution to extract the edge gradient information, achieving  efficient separation of target features and background noise. Secondly, aiming at the problem of feature loss caused by downsampling, we constructed a global context extraction module  to perform cross-scale global modeling of deep features,  preventing the loss of target features in the deep layers of the network. The experimental results  on multiple public datasets show that this method  significantly improves mIoU, nIoU and F1 indicators compared with advanced algorithms such as AGPCNet and DNANet,  optimizes the performance of infrared small target detection algorithm and improves the perception ability of complex scenes.

Key words: small target detection, infrared image, central differential convolution, feature adaptation, deep learning

中图分类号: 

  • TP391.41