吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1462-1467.

• • 上一篇    下一篇

基于模糊聚类的多传感器数据融合算法优化

谢宇威, 林传峰   

  1. 浙江大学 信息技术中心,  杭州 310027
  • 收稿日期:2024-11-04 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 谢宇威 E-mail:xieyuwei@zju.edu.cn

Optimization of Multi-sensor Data Fusion Algorithm Based on Fuzzy Clustering

XIE Yuwei, LIN Chuanfeng   

  1. Information Technology Center, Zhejiang University, Hangzhou 310027, China
  • Received:2024-11-04 Online:2025-09-26 Published:2025-09-26

摘要: 针对受传感器本身误差和外界干扰的影响, 不同传感器获取的数据可能存在不确定性和不一致性的问题, 为有效消除数据之间的矛盾和冲突, 提升数据融合效果, 提出一种基于模糊聚类的多传感器数据融合算法. 首先, 采用D-S(Dempster-Shafer)证据理论进行数据初步融合, 计算异类数据之间的距离并确定对应的信任函数, 对不同传感器数据进行校正和协调, 以提高数据的一致性. 其次, 引入模
糊聚类方法对多传感器数据初步融合结果进行优化, 将数据点分组为具有相似特征的簇, 确定初始聚类中心. 最后, 利用模糊聚类算法对数据分组, 提高数据融合结果的准确性和鲁棒性. 实验结果表明, 该算法在多传感器数据融合中拟合优度和分片接收率较高, 且能量总体消耗较低, 整体性能优异.

关键词: 模糊聚类, 多传感器, 数据融合, D-S证据理论

Abstract: Aiming at the problem that the data obtained by different sensors might be uncertain and inconsistent due to the influence of  sensor’s own error and external interference, in order to effectively eliminate the contradictions and conflicts between data and improve the data fusion effect, we proposed a multi-ensor data fusion algorithm based on fuzzy clustering. Firstly, the D-S (Dempster-Shafer) evidence theory was used for preliminary data fusion, the distance between heterogeneous data was calculated and the corresponding trust function was determined, and different sensor data were corrected and coordinated to improve data consistency. Secondly, we introduced fuzzy clustering method to optimize the preliminary fusion results of multi-sensor data, 
grouped data points into clusters with similar features, and determined the initial clustering center. Finally, we used  fuzzy clustering algorithm to group data and improve the accuracy and robustness of data fusion results. The experimental results show that the proposed algorithm has high fitting goodness and shard reception rate in multi-sensor data fusion, and overall energy consumption is low, with excellent overall performance.

Key words: fuzzy clustering, multi-sensor, data fusion, D-S evidence theory

中图分类号: 

  • TP393