吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1694-1700.

• • 上一篇    下一篇

基于路径贡献度评判的双种群蚁群算法TSP问题求解分析方法

蒋成1, 郭向坤2   

  1. 1. 湖北工程学院 计算机与信息科学学院, 湖北 孝感 432000; 2. 沈阳理工大学 信息科学与工程学院, 沈阳 110159
  • 收稿日期:2024-07-12 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 蒋成 E-mail:hbeutcjiangcheng@163.com

Analysis Method for Solving  TSP Problem of  Dual Population Ant Colony Algorithm Based on Path Contribution Evaluation

JIANG Cheng1, GUO Xiangkun2   

  1. 1. School of Computer and Information Science, Hubei Engineering University, Xiaogan 432000, Hubei Province, China;
    2. School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
  • Received:2024-07-12 Online:2025-11-26 Published:2025-11-26

摘要: 针对旅行商问题(traveling salesman problem, TSP)的搜索空间随城市数量的增加而呈指数级增长, 使算法在有限时间内难以遍历所有可能的路径, 且在搜索过程中易受信息素累积的影响, 导致算法过早收敛到局部最优解的问题, 为在求解TSP时可以快速收敛到高质量的解, 提出一种基于路径贡献度评判的双种群蚁群算法TSP问题求解分析方法. 首先, 以赋权图的形式建立TSP数学模型. 其次, 引入两个独立的种群进行并行搜索: 一个种群采用精英蚂蚁系统更新信息素, 利用已有信息快速收敛, 得到TSP的最短路径; 另一个种群采用强化子路径评判机制更新信息素, 通过探索新的解空间的方式跳出局部最优解, 得到TSP的最短路径. 再次, 以对比分析两个种群最短路径的方式, 得到较小值的最短路径, 作为全局最优路径. 最后, 引入路径贡献度评判机制再次更新两个种群的信息素, 得到最终的TSP解. 实验结果表明, 该方法可有效求解分析不同规模的TSP, 不仅可缩短路径长度, 得到一条遍历全部城市并返回起点的最短路径, 且数据分布效果较佳. 

关键词: 路径贡献度, 双种群, 蚁群算法, 旅行商问题, 精英蚂蚁系统, 强化子路径

Abstract: Aiming at the problem that the search space of the traveling salesman problem (TSP) grew exponentially with the increase of the number of cities, making it difficult for the algorithm to traverse all possible paths in a limited time, and was susceptible to the accumulation of pheromones during the search process, leading to premature convergence to local optimal solutions. In order to quickly converge to high-quality solutions when solving TSP, we proposed an analysis method for solving  TSP problem of  dual population ant colony algorithm based on path contribution evaluation. Firstly, we established a TSP mathematical model in the form of a weighted graph. Secondly,  two independent populations were introduced for parallel search: One population used an elite ant system to update pheromones, quickly converged using existing information, and obtained the shortest path of TSP; the other population used a strengthening  sub path evaluation mechanism to update pheromones,  jumped out of the local optimal solution by searching for new solution spaces, and  obtained the shortest path of TSP. Thirdly, by comparing and analyzing the shortest paths of the two populations, the shortest path with the smaller value was obtained as the global optimal path. Finally, introducing a path contribution evaluation mechanism to update the pheromones of the two populations again, we obtained the final TSP solution. Experimental results  show that this method can effectively solve and analyze TSPs of different scales. It can not only shorten the length of the path, but also obtain the shortest path that traverses all cities and returns to the starting point, and the data distribution effect is better.

Key words:  , path contribution, dual population, ant colony algorithm, traveling salesman problem, elite ant system, strengthening sub path

中图分类号: 

  • TP18