吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1701-1712.

• • 上一篇    下一篇

多策略蜣螂优化算法求解多车场车辆路径问题

张强, 胡月, 陆俊翼, 李青   

  1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2024-07-12 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 胡月 E-mail:hy09201020@163.com

Multi-strategy Dung Beetle Optimizer Algorithm for Solving Multi-depot Vehicle Routing Problem

ZHANG Qiang, HU Yue, LU Junyi, LI Qing   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
  • Received:2024-07-12 Online:2025-11-26 Published:2025-11-26

摘要: 针对多车场带时间窗的车辆路径问题, 构建以总成本最小为目标的模型, 提出一种基于多策略改进的蜣螂优化算法对其求解. 通过引入等级制度对滚球蜣螂进行更新, 建立与顶级蜣螂之间的交流, 提高算法搜索能力; 设计差分变异对繁殖蜣螂的位置进行扰动, 减少陷入局部最优的可能性; 针对觅食蜣螂设计概率驱动的随机觅食行为, 使蜣螂随机探索更广阔的搜索空间以寻找潜在的最优解; 利用对立学习生成小偷蜣螂的反向解, 提高找到更好候选解的概率, 加强算法寻优能力. 利用该算法解决多车场带时间窗车辆路径问题, 在数据集Solomon上与其他6种智能算法进行对比实验的结果表明, 该算法优于其他对比算法, 具有较好的搜索能力与应用价值.

关键词: 蜣螂优化算法, 多车场车辆路径问题, 差分变异, 社会等级制度, 对立学习

Abstract: Aiming at the multi-depot vehicle routing problem with time windows, we constructed a model with the goal of minimizing total cost,  proposed an improved dung beetle optimizer algorithm based on multi-strategy, and solved it. By introducing a hierarchical system to update rolling dung beetles, it established communication with top-tier beetles to enhance the algorithm’s search capability. Differential variation was designed to perturb the positions of reproductive dung beetles and  reduce the likelihood of getting stuck in local optima. Probability-driven random foraging behavior was devised for foraging dung beetles, enabling them to randomly explore broader search spaces to find potential optimal solutions. Adversarial learning was using to generate reverse 
solutions for thief dung beetles, increasing the probability of finding better candidate solutions and strengthening the algorithm’s optimization capability. This algorithm was using to solve the multi-depot vehicle routing  problem with time windows. Comparative experiments with six other intelligent algorithms on the Solomon dataset show that the proposed algorithm is superior to other comparative algorithms and has good  search capabilities and application value.

Key words: dung beetle optimizer algorithm, multi-depot vehicle routing problem, differential variation, social hierarchy, adversarial learning

中图分类号: 

  • TP18