J4

• 计算机科学 • 上一篇    下一篇

基于局部密度比的模糊隶属度设置算法

杨晓伟1,2, 邵壮丰1 梁艳春2,3, 吴春国2,3   

  1. 1. 华南理工大学 数学科学学院, 广州 510640; 2. 吉林大学 计算机科学与技术学院, 长春 130012;3. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2006-06-02 修回日期:1900-01-01 出版日期:2006-08-26 发布日期:2006-08-26
  • 通讯作者: 杨晓伟

A Localdensityratio Based Algorithm for Setting Fuzzy Memberships

YANG Xiaowei1,2, SHAO Zhuangfeng1, LIANG Yanchun23, WU Chunguo23   

  1. 1. School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China;2. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 3. Key Laboratory ofSymbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2006-06-02 Revised:1900-01-01 Online:2006-08-26 Published:2006-08-26
  • Contact: YANG Xiaowei

摘要: 基于知识发现中的局部异常因子思想, 提出一种基于局部密度比的模糊隶属度设置算法, 该算法根据样本的邻域密度比设置样本的隶属度, 并采用一种单参数选择策略. 数值实验表明, 所提出的算法在带噪声的非线性函数估计方面具有很好的鲁棒性, 有效地解决了模糊支持向量机中的模糊隶属度设置问题, 对处理带噪声的分类和非线性函数估计问题具有重要的意义.

关键词: 模糊支持向量机, 局部异常因子, 局部密度比, 模糊隶属度

Abstract: Based on the local outlier factor (LOF) for detecting outlier in knowledge discovery, a localdensityratio (LDR) based setting fuzzy membership algorithm was developed. In the proposed algorithm, the fuzzy membe rships are assigned to the samples according to their neighborhood density ratios and a single parameter selection strategy is also adopted. Numerical experiments showed that the proposed algorithm possesses a good robustness for nonlinear function estimation problems with noise data. The presented algorithm is effective for setting fuzzy memberships in fuzzy support vector machine, which is importan t to deal with classification problems and nonlinear function estimation problems with noise data.

Key words: fuzzy support vector machine, local outlier factor, localdensityratio, fuzzy membership

中图分类号: 

  • TP183