吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

传染病模型中新增病例的几乎必然收敛性

吕丁丁, 董志山   

  1. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2013-08-09 出版日期:2014-03-26 发布日期:2014-03-20
  • 通讯作者: 董志山 E-mail:dongzs@jlu.edu.cn

Almost Surely Convergence for New Infective in Epidemic Model

LV Dingding, DONG Zhishan   

  1. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2013-08-09 Online:2014-03-26 Published:2014-03-20
  • Contact: DONG Zhishan E-mail:dongzs@jlu.edu.cn

摘要:

以动态随机图论为工具, 使用分支过程近似方法, 研究大人口规模下离散时间传染病模型的渐近性. 结果表明: 对传统的\%SIR\%模型进行改进后, 单独个体不再以相同概率与其他个体发生接触, 而是以特定分布拥有一定数量的亲友; 当初始患者数量不大时, 用分支过程近似传染病传播过程有效; 结合分支过程理论经典结果, 当人群规模不断扩张时, 新增患者数量将呈现几乎必然收敛性.

关键词: 随机图, 传染病模型, 分支过程, 几乎必然收敛性

Abstract:

We used the theory of dynamic random graph as the tool to investigate the convergence of a stochastic discretetime epidemic model in a large population by means of the method of branching process approximation. The significance of the paper lies in the improved \%SIR\% model. Each individual has a certain number of acquaintances with a fixed distribution. As the number of initially infective individuals stays small, a branching process approximation for
 the number of infective individuals is in force. Using the results of the branching process, we will have the main results, that is, the number of new infective individuals will present some almost surely limit properties with the size of the population extending.

Key words: random graph, epidemic model, branching process, almost surely convergence

中图分类号: 

  • O211.4