J4

• 数学 • 上一篇    下一篇

一类非散度型退化抛物方程Cauchy问题粘性解的某种连续性

周文书, 蔡守峰   

  1. 吉林大学数学学院应用数学系, 长春 130012
  • 收稿日期:2004-01-06 修回日期:1900-01-01 出版日期:2004-07-26 发布日期:2004-07-26
  • 通讯作者: 周文书

Certain continuity of viscosity solutions of the Cauchy problemfor a degenerate parabolic equations not in divergence form

ZHOU Wen-shu, CAI Shou-feng   

  1. Department of Applied Mathematics, College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2004-01-06 Revised:1900-01-01 Online:2004-07-26 Published:2004-07-26
  • Contact: ZHOU Wen-shu

摘要: 研究一类非散度型退化抛物方程Cauchy问题粘性解的性质. 其中的粘性解是指用粘性消失法得到的分布意义下的弱解, 是惟一的. 利用研究弱解的技巧, 通过建立粘性解的一系列估计, 证明了粘性解关于某个参数(含在方程中)的连续性.

关键词: 粘性解, 非散度型, 退化抛物方程, 连续性

Abstract: The property of the viscosity solutions of the Cauchy problem of a degenerate parabolic equation not in divergence form is studied. The viscosity solution means a weak solution in the distribution sense obtained by the vanishing viscosity method. Using some techiques of studying weak solutions and establishing some estimates on the viscosity solution, we prove the continuity of the viscosity solution with respect to aparameter contained in the equations.

Key words: viscosity solution, not in divergence form, degenerate parabolic equation, continuity

中图分类号: 

  • O175.26