J4

• 数学 • 上一篇    下一篇

广义次正定矩阵的行列式不等式

袁 晖 坪   

  1. 重庆工商大学理学院, 重庆 400067
  • 收稿日期:2003-10-28 修回日期:1900-01-01 出版日期:2004-07-26 发布日期:2004-07-26
  • 通讯作者: 袁晖坪

Determinantal inequality of generalized positive subdefinite matrices

YUAN Hui-ping   

  1. School of Sciences, Chongqing University of Technology and Business, Chongqing 400067, China
  • Received:2003-10-28 Revised:1900-01-01 Online:2004-07-26 Published:2004-07-26
  • Contact: YUAN Hui-ping

摘要: 给出了广义次正定矩阵的概念, 通过研究它的基本性质及行列式理论, 取得一系列新结果, 将著名的Schur定理、 华罗庚定理、 Minkowski不等式、 Hadamard不等式、 Openheim不等式和Ostrowski-Taussy不等式拓广到了广义次正定阵上, 扩大了Minkowski不等式的指数范围.

关键词: 广义次正定矩阵, 次亚正定矩阵, 行列式, 不等式

Abstract: The concept of generalized positive subdefinite matrix is given, and its properties and determinant theories are discussed, and many new results are obtained. As application, some famous theorems and inequalities named after Schur, HUA Loo-geng, Minkowski,Hadamard, Openheim and Ostrowski-T aussy are generalized, and the index scope of Minkowski inequality is enlarged.

Key words: generalized positive subdefinite matrix, metaposi tive subdefinite matrix, determinant, inequality

中图分类号: 

  • O151.21