J4

• 数学 • 上一篇    下一篇

基于圆域上多项式逼近的图像重建算法

孙雪楠, 梁学章   

  1. 吉林大学数学研究所, 长春 130012
  • 收稿日期:2003-12-15 修回日期:1900-01-01 出版日期:2004-07-26 发布日期:2004-07-26
  • 通讯作者: 孙雪楠

Image reconstruction algorithm based on polynomialapproximation on a circular domain

SUN Xue-nan, LIANG Xue-zhang   

  1. Institute of Mathematics, Jilin University, Changchun 130012, China
  • Received:2003-12-15 Revised:1900-01-01 Online:2004-07-26 Published:2004-07-26
  • Contact: SUN Xue-nan

摘要: 以Marr算法为基础, 给出了圆域D上图像重建的一种 基于二元多项式逼近的加速算法. 加速后算法的计算量为O(Nlg N), 当N较大时, 新算法的运行时间远小于原算法的运行时间. 同时, 与传统图像重建算法〖CD2〗滤波反投影算法(FBP)相比, 基于多项式逼近加速算法重建的图像质量优于前者. 仿真实验验证了此算法的有效性.

关键词: Radon变换, 图像重建, 快速Fourier变换, Chebyshev多项式

Abstract: On the basis of the Marr's algorithm, a new fast algorithm for image reconstruction based on bivariate polynomial approximation on a circular domain is presented. The computational complexity of the algorithm is O(Nlg N). The execution time of the new algorithm is far shorter than that of the old one. Furthermore, compared with the traditional method__filter back projection algorithm, the quality of the reconstruction image from the algorithm based on polynomial approximation is better. The computer simulation experiment has shown the efficiency of the algorithm.

Key words: radon transform, image reconstruction, fast Fourier transform, Chebyshev polynomial

中图分类号: 

  • O241.5