Journal of Jilin University Science Edition ›› 2021, Vol. 59 ›› Issue (1): 39-44.
Previous Articles Next Articles
WANG Miao, WANG Zhanping
Received:
Online:
Published:
Abstract: Let T=((A 0 U B)) be a triangular matrix ring, where A and B are rings and U is a (B,A)-bimodule. We use the isomorphism of modules tensor on the ring T as a bridge to give the equivalent condition that a module on the ring T is a projectively coresolved Gorenstein flat module: if fd(BU)<∞,fd(UA)<∞ or id(UA)<∞, then a left T-module M=((M1 M2))φM is projectively coresolved Gorenstein flat module if and only if M1 is projectively coresolved Gorenstein flat left A-module, Coker φM=M2/Im(φM) is projectively coresolved Gorenstein flat left B-module and φM: U*AM1→M2 is a monomorphism.
Key words: projectly coresolved Gorenstein flat module, triangular matrix ring, adjoint functor
CLC Number:
WANG Miao, WANG Zhanping. Projectively Coresolved Gorenstein Flat Modules over Triangular Matrix Rings[J].Journal of Jilin University Science Edition, 2021, 59(1): 39-44.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://xuebao.jlu.edu.cn/lxb/EN/
http://xuebao.jlu.edu.cn/lxb/EN/Y2021/V59/I1/39
Cited