吉林大学学报(信息科学版) ›› 2014, Vol. 32 ›› Issue (6): 637-645.

• 论文 • 上一篇    下一篇

蚁群神经网络在变压器故障诊断中的应用

王艳芹,任伟建,王重云   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 大庆师范学院 物理与电气信息工程学院, 黑龙江 大庆 163712
  • 收稿日期:2014-04-02 出版日期:2014-11-25 发布日期:2015-01-09
  • 作者简介:王艳芹(1979—), 女, 黑龙江海伦人, 大庆师范学院讲师, 东北石油大学博士研究生, 主要从事智能优化算法与故障诊断研究, (Tel)86-459-5510107(E-mail)wyqdqpi@126.com; 任伟建(1963—), 女, 黑龙江齐齐哈尔人, 东北石油大学教授, 博士生导师, 主要从事复杂系统建模与控制研究, (Tel)86-459-6504322(E-mail)renwj@126.com。
  • 基金资助:

    国家自然科学基金资助项目(61374127); 黑龙江省教育厅科学技术研究基金资助项目(12511014); 黑龙江省博士后科研启动基金资助项目(LBHQ12143)

Application of Ant Colony Neural Network in Transformer Fault Diagnosis

WANG Yanqin, REN Weijian, WANG Zhongyun   

  1. 1. Electrical Information Engineering Institute, Northeast Petroleum University, Daqing 163318, China;2. School of Physics and Electrical Information Engineering, Daqing  Normal University, Daqing 163712, China
  • Received:2014-04-02 Online:2014-11-25 Published:2015-01-09

摘要:

针对蚁群算法收敛速度慢的问题, 提出了一种改进方法, 通过为蚁群算法增加一种收敛因子,  使其在信息素的全局更新中为每次迭代产生的最优路径赋予额外的信息素增量, 降低了算法陷入局部最优解的可能性。分析了改进蚁群算法的收敛性, 并对其寻优能力进行了测试, 结果表明, 改进蚁群算法具有较强的寻优能力和较快的收敛速度。用改进蚁群算法优化神经网络并将其应用于变压器的故障诊断, 与BP神经网络诊断结果对比, 蚁群算法优化神经网络具有更快的收敛速度和更高的诊断精度。

关键词: 蚁群算法, 神经网络, 变压器, 故障诊断

Abstract:

To solve the problem of slow convergent speed of ACA (Ant Colony Algorithm), an improved method is proposed. One kind of convergence factor is a
dded to ACA to guarantee that the best route produced in each iteration would be given additional pheromone increment during the pheromone global updating procedure. Therefore, the possibility of algorithm trapped in local optimal solution is reduced. The convergence of the improved ACA is proved and its optimizing ability is tested. The simulation results show that the improved ACA has higher optimizing ability and faster convergent speed in contrast with the basic ACA. The improved ACA is used to optimize neural network, and the optimized neural network is applied in the diagnosis of transformer fault. The results show that the optimized neural network based on the improved ACA has higher convergent speed and diagnostic accuracy in contrast with BP neural network.

Key words: ant colony algorithm, neural network, transformer, fault diagnosis

中图分类号: 

  • TP18