吉林大学学报(信息科学版) ›› 2014, Vol. 32 ›› Issue (6): 664-669.
邢吉生1, 武海巍1,2
XING Jisheng1, WU Haiwei1,2
摘要:
为提高啤酒企业包装车间生产耗电的预测精度, 提出了一种基于支持向量机和粒子群优化算法的预测模型构建方法。该方法将radial basis function函数作为支持向量机的核函数构建预测模型, 使用K-fold交叉验证方法, 利用粒子群算法(PSO: Particle Swarm Optimization)对惩罚参数c和g值寻优。以28天的生产耗水和生产耗电数据作为训练集, 以10天的生产耗水数据作为预测集, 分别构建基于radial basis function函数与polynomial函数的生产耗电支持向量机预测模型对生产耗电数据进行预测。实验结果表明, 以radial basis function函数作为核函数与以polynomial函数作为核函数相比, 该支持向量机预测模型对生产耗电的预测精度提高了51.495%,该方法具有一定的实用性。
中图分类号: