吉林大学学报(信息科学版) ›› 2016, Vol. 34 ›› Issue (5): 645-650.

• 论文 • 上一篇    下一篇

基于张量子空间的三维模型特征提取及检索方法

王新颖, 岳远扬   

  1. 长春工业大学 计算机科学与工程学院, 长春 130012
  • 收稿日期:2015-08-15 出版日期:2016-09-24 发布日期:2017-01-16
  • 作者简介:王新颖(1979—), 女, 长春人, 长春工业大学副教授, 博士, 硕士生导师, 主要从事机器学习、 数据挖掘、 三维模型检索等研究, (Tel)86-15943029559(E-mail)wang_xinying1979@163. com。
  • 基金资助:
    国家自然科学基金资助项目(61303132); 吉林省科技厅自然科学基金资助项目(201215127)

Method of 3D Model Feature Extraction and Retrieval Based on Tensor Subspace Learning

WANG Xinying, YUE Yuanyang   

  1. College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2015-08-15 Online:2016-09-24 Published:2017-01-16

摘要: 为提高三维模型的检索效率, 针对三维模型特征提取方法进行了研究, 在多线性主成分分析(MPCA:Multi-Linear Principal Component Analysis)的基础上, 提出了一种加权多线性主成分分析(WMPCA: Weighted Multi-Linear Principal Component Analysis)方法, 并将其应用于三维模型特征提取中。 该方法首先将三维模型转化为多角度的二维投影图像, 然后从多方向上通过张量进行特征提取, 最后将提取到的特征应用到三维模型检索中。 对 Princeton Shape Benchmark 的实验表明, 该特征提取方法比经典的形状分布方法平均检索效率提高7%, 比传统的 MPCA 特征提取方法的平均检索效率提高 3%。

关键词: 张量子空间, 多线性主成分分析, 三维模型检索

Abstract: Feature extraction method for 3D model was studied. A method of WMPCA(Weighted Multi-linear Principal Component Analysis) for feature extraction based on MPCA(Multi-Linear Principal Component Analysis) was proposed, and it was applied to 3D model feature extraction. Firstly, the 3D model was transformed into multi-angle 2D projection images, and then were extracted features using tensor from multi-direction. Finally, the extracted features were applied to 3D model retrieval. Experimental results on Princeton Shape Benchmark show that the feature extraction method is better than classical shape distribution method and traditional MPCA method.

Key words: 3D model retrieval, multi-linear principal component analysis (MPCA), tensor subspace learning

中图分类号: 

  • TP391