吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于改进蚁群算法对 VRP 线路优化

王晓东, 张永强, 薛 红   

  1. 西安工程大学 理学院, 西安 710048
  • 收稿日期:2016-05-08 出版日期:2017-03-27 发布日期:2017-06-07
  • 作者简介:王晓东(1974— ), 女, 陕西咸阳人, 西安工程大学副教授, 主要从事统计建模与仿真、 智能算法研究, (Tel)86- 13669230387(E-mail)591765847@ qq. com。
  • 基金资助:
     陕西省自然科学基金资助项目(2016JM1031)

Improved Ant Colony Algorithm for VRP

WANG Xiaodong, ZHANG Yongqiang, XUE Hong   

  1. School of Science, Xi蒺an Polytechnic University, Xi蒺an 710048, China
  • Received:2016-05-08 Online:2017-03-27 Published:2017-06-07

摘要:  针对基本蚁群算法存在易陷入局部最优解、 收敛速度慢等缺点, 先引入节约矩阵 U 作为先验信息引导蚂
蚁搜索, 然后通过不同搜索时段采用不同的信息素挥发因子, 使算法更好地在“探索冶和“利用冶之间达到平衡,
并对较优解应用 2-opt 方法进行优化。 最后将改进后的蚁群算法应用到物流配送车辆路径优化问题中。 实验结
果表明, 相比基本蚁群算法, 改进的算法可得到更好的物流配送路径, 是解决物流配送路径优化问题的一种有
效方法, 可快速、 高效地对送货车辆线路进行调整, 满足消费者的需求。

关键词: 信息素, 蚁群算法, 物流配送

Abstract: Because the basic ant colony algorithm is easy to fall into local optimal solution, slow convergence and
other shortcomings, and the economy-matrix is firstly introduced as a priori information to guide ants, then
evaporation factor by different periods with different search pheromone make the algorithm balance between
“explore冶 and “use冶. The optimal solution is optimized by 2-opt method. Finally, the improved ant colony
algorithm is applied to physical distribution and vehicle routing optimization problem. The tests results show that
it is better than the basic ant colony algorithm of physical distribution path, and it is an effective method to solve
physical distribution route optimization problem, quickly and efficiently carry out the adjustment of the physical
distribution path to meet the needs of consumers.

Key words:  ant colony algorithm, physical distribution, pheromone

中图分类号: 

  • TP391. 9