吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于融合特征提取与 LLE 方法的表情识别

兰 兰, 陈万忠, 魏庭松   

  1. 吉林大学 通信工程学院, 长春 130022
  • 收稿日期:2016-12-29 出版日期:2017-09-29 发布日期:2017-10-23
  • 作者简介:兰兰(1993— ), 女, 吉林通化人, 吉林大学硕士研究生, 主要从事模式识别与图像处理研究, (Tel)86-18204314199(E-mail)lanlan15@ mails. jlu. edu. cn; 陈万忠(1964— ), 男, 长春人, 吉林大学教授, 博士生导师, 主要从事信号与信息处理、 模式识别与智能系统研究, (Tel)86-13500801366(E-mail)chenwz@ jlu. edu. cn。
  • 基金资助:
    吉林省科技发展计划自然基金资助项目(20150101191JC)

Expression Recognition Based on Fusion Features Extraction and LLE Method

LAN Lan, CHEN Wanzhong, WEI Tingsong   

  1. College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2016-12-29 Online:2017-09-29 Published:2017-10-23

摘要:  为保证所提取特征表征作用的全面性, 提出一种基于几何特征和局部纹理特征相结合的特征提取方法。
将基于主动表观模型(AAM: Active Appearance Model)特征点标记提取的几何特征和基于局部二值模式(LBP:
Local Binary Pattern)提取的眼部和嘴部纹理特征进行融合, 融合后的特征经局部线性嵌入(LLE: Locally Linear
Embedding)方法进行特征降维, 并使用多分类的支持向量机(SVM: Support Vector Machine)进行分类识别。
该方法分别选取 JAFFE 数据集 7 类表情和小样本数据集 Yale 的 4 类表情进行实验, 识别准确率分别达到了
98. 57%和 91. 67%, 从而证明了该方法的有效性。

关键词: 局部二值模式, 支持向量机, 表情识别, 主动表观模型, 局部线性嵌入

Abstract: Feature extraction is a basis, a vital step and a major issue in facial expression recognition. To
ensure that the extracted features can be more comprehensive characterization of a certain kind of expression,
we present a feature extraction method based on fused geometry and local texture features. Geometric features
are obtained from the feature points marked by AAM (Active Appearance Model) algorithm, texture feature
extraction is based on LBP (Local Binary Pattern) algorithm, the dimension of fusion expression features is
reduced by LLE ( Locally Linear Embedding) algorithm. Finally, a multi-class SVM ( Support Vector
Machine) is used for facial expression classification. Our method is deployed on the JAFFE and Yale data
sets, the results show a recognition accuracy of 98. 57% and 91. 67% respectively, which prove the
effectiveness of our proposed method.

Key words: local binary pattern(LBP), support vector machine (SVM).,  facial expression recognition, active appearance model (AAM), locally linear embedding (LLE)

中图分类号: 

  • TP391