吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (4): 430-438.

• • 上一篇    下一篇

基于 VMD-IWOA-LSSVM 的短期负荷预测

高金兰, 王 天   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2020-12-01 出版日期:2021-07-24 发布日期:2021-08-01
  • 作者简介:高金兰(1978— ), 女, 山西运城人, 东北石油大学副教授, 主要从事电力系统运行与稳定、 新能源发电研究, (Tel)86-13674596089(E-mail)jinlangao@ 163. com
  • 基金资助:
    黑龙江省自然科学基金联合引导资助项目(JJ2019LH0187)

Short-Term Load Forecasting Based on VMD-IWOA-LSSVM

GAO Jinlan, WANG Tian   

  1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China
  • Received:2020-12-01 Online:2021-07-24 Published:2021-08-01

摘要: 为提高负荷预测结果的精度, 设计了一种基于 VMD-IWOA-LSSVM ( Variational Mode Decomposition- Improved Whale Optimization Algorithm-Least Square Support Vector Machine)短期负荷预测模型。 先通过变分模态算法将原始负荷数据分解成多个子序列, 将分解数据分别输入到经由种群变异策略和邻域搜索延伸策略改进的鲸鱼优化算法优化后的最小二乘支持向量机中, 每个子序列的预测结果进行相加, 即可得到最终的预测结果。 通过仿真对比实验, 4 月 1 日和 8 月 1 日 VMD-WOA-LSSVM 的平均绝对百分比误差(MAPE: Mean Absolute Percentage Error)与 VMD-WOA-LSSVM 相比, 分别下降了 0. 17 和 0. 33, 证明了 VMD-IWOA-LSSVM 短期负荷预测模型可以有效改善电力负荷预测的准确性。

关键词:  , 变分模态分解,  , 最小二乘支持向量机,  , 改进鲸鱼算法,  , 邻域延伸搜索策略,  , 种群变异策略,  , 负荷预测

Abstract: To improve the accuracy of the prediction results, a prediction model is designed based on VMD- IWOA-LSSVM(Variational Mode Decomposition-Improved Whale Optimization Algorithm-Least Square Support Vector Machine). The original load data is decomposed into multiple sub-sequences by the variational modal algorithm. The decomposed data is entered respectively least squares support vector machine optimized by an improved whale optimization algorithm through population mutation strategy and neighborhood search extension. The final prediction result is obtained after the prediction results of each sub-sequence are added. Comparing to simulation experiment VMD-WOA-LSSVM and VMD-IWOA-LSSVM, mean Absolute Percentage Error of VMD- IWOA-LSSVM drops 0. 17 and 0. 33 respectively at the April 1 and August 1 than VMD-WOA-LSSVM. It proves that the short-term load prediction model of the VMD-IWOA-LSSVM can effectively improve the accuracy of power load forecasting.

Key words: variational mode decomposition(VMD), least squares support vector machine(LSSVM), improved whale algorithm( IWOA), neighborhood extended search strategy, population mutation strategy, load forecasting

中图分类号: 

  • TM734