吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (5): 589-595.

• • 上一篇    下一篇

基于认知图谱的智能问答系统推理模型研究

袁 满, 张维罡, 李明轩   

  1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2021-05-25 出版日期:2021-10-01 发布日期:2021-10-01
  • 作者简介:袁满(1965— ), 男, 吉林农安人, 东北石油大学教授, 博士生导师, 主要从事大数据、知识工程等研究, ( Tel) 86-15765959186(E-mail)yuanman@nepu.edu.cn。
  • 基金资助:
    黑龙江省高等教育教学改革基金资助项目(SJGY20200107)

Research on Reasoning Model of Intelligent Question Answering System Based on Cognitive Map

YUAN Man, ZHANG Weigang, LI Mingxuan   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2021-05-25 Online:2021-10-01 Published:2021-10-01

摘要: 目前现有问答系统模型大多数都采用模板匹配的方式进行推理, 对问题推理不够充分, 因此, 提出基于 认知图谱的问答系统推理模型。 依据专业领域知识作为知识源构建本体; 并基于该认知图谱构建了 “问题-关系”一对一的认知图谱问答系统模型。 最后通过将问答问题划分为简单问题与复杂问题分别对问题进 行处理, 其中简单问题运用 BERT + CRF ( Bidirectional Encoder Representations from Transformers + Conditional Random Field)模型进行模板匹配; 针对复杂问题运用 Node2vec 生成子图后用 GCN ( Graph Convolutional Network)推理模型进行推理, 将得出的答案作为输出结果。 最后对所提出的模型通过井下作业领域进行了 实验, 结果表明认知图谱问答模型优于其他算法模型。

关键词: 认知图谱,  , 问答系统,  , GCN 模型,  , 推理模型

Abstract: At present, most of the existing question answering system models use template matching for reasoning, which is not enough for question reasoning. Therefore, a question answering system reasoning model is proposed based on cognitive map. Firstly, the ontology is constructed based on the domain knowledge as the knowledge source, and then the question relation one-to-one cognitive map question answering system model is constructed based on the cognitive map. Finally, the question and answer is divided into simple question and complex question, and the simple question is matched by BERT + CRF(Bidirectional Encoder Representations from Transformers+Conditional Random Field) model. For the complex question, node2vec is used to generate subgraph, then GCN(Graph Convolutional Network) reasoning model is used for reasoning, and the answer is taken as the output result. The proposed model is tested in the field of underground operation, and the results show that the cognitive map Question answering model is better than other algorithm models.

Key words: cognitive map, question answering system, graph convolutional network ( GCN ) model, reasoning model

中图分类号: 

  • TP301. 6