吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (5): 602-608.

• • 上一篇    下一篇

基于 OpenCV 视觉库的手写数字识别系统

周原锐, 张逸群, 曹远航, 孙慧慧   

  1. 吉林大学 仪器科学与电气工程学院, 长春 130061
  • 收稿日期:2021-04-10 出版日期:2021-10-01 发布日期:2021-10-01
  • 通讯作者: 孙慧慧(1984— ), 女, 黑龙江鹤岗人, 吉林大学工程师, 主要从事控制系统及信号处理方法研究, (Tel)86-13159608682(E-mail)sunhuihui@jlu.edu.cn。
  • 作者简介:周原锐(1999— ), 男, 长春人, 吉林大学本科生, 主要从事数字图像处理与智能控制研究, ( Tel) 86-13756087583 (E-mail)uoiea4@163.com。
  • 基金资助:
    国家级大学生创新训练基金资助项目(201910183386)

Handwritten Digital Recognition System Based on Visual Library OpenCV

ZHOU Yuanrui, ZHANG Yiqun, CAO Yuanhang, SUN Huihui   

  1. College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China
  • Received:2021-04-10 Online:2021-10-01 Published:2021-10-01

摘要: 运行在电脑的手写数字识别系统在移动性和便捷性方面存在诸多缺陷, 为此, 将数字识别算法移植于灵 活小巧的高性能嵌入式设备, 设计了一种基于视觉库 OpenCV(Open Source Computer Vision Library)的手写数字 识别系统。 通过舵机云台调整拍摄角度, 利用图片拼接和数字分割技术, 实现短距离、大面积的手写数字识 别。 比较了使用 KNN(K-Nearest Neighbor)、支持向量机和人工神经网络 3 种分类算法训练的模型在识别速度、 识别准确率、模型体积等方面的区别, 经过测试, 使用人工神经网络算法在树莓派上的识别时间可低至 0. 115 s, 识别准确率可达 72% , 具有一定的应用价值。

关键词: 手写数字识别; , 人工神经网络; , 模型训练; , OpenCV 视觉库

Abstract: There are many defects in the mobility and convenience of the handwritten digit recognition system running on the computer. In order to make improvement for these defects, a handwritten digit recognition system based on the visual library OpenCV is designed, which transplants the digit recognition algorithm into the flexible and small high-performance embedded equipment. By adjusting the shooting Angle of the steering gear and using the technology of picture splicing and digital segmentation, the handwritten digit recognition of short distance and large area is realized. The recognition speed, recognition accuracy and model volume of the models trained by KNN(K-Nearest Neighbor), support vector machine and artificial neural network are compared. After testing, the identification time of Raspberry Pi by using the artificial neural network algorithm can be as low as 0. 115 s, and the recognition accuracy can reach 72% , which has a certain application value.

Key words: handwritten digit recognition, artificial network, model training, OpenCV vision library

中图分类号: 

  • TP274