吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (6): 647-655.

• • 上一篇    下一篇

基于GAVMD-SGRU模型的风电场短期功率预测

高金兰1 , 李 豪1 , 邓 蒙2   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 贵州电网公司六盘水水城供电局 陡箐供电所, 贵州 六盘水 553000
  • 收稿日期:2021-04-02 出版日期:2021-12-01 发布日期:2021-12-02
  • 作者简介:高金兰(1978— ), 女, 山西运城人, 东北石油大学副教授, 主要从事电力系统运行与稳定、 新能源发电研究, (Tel)86-13674596089(E-mail)jinlangao@ 163. com。
  • 基金资助:
    黑龙江省自然科学基金联合引导基金资助项目(JJ2019LH0187)

Short Term Power Prediction of Wind Farm Based on GAVMD-SGRU Model

GAO Jinlan 1 , LI Hao 1 , DENG Meng 2   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China; 2. Douqing Power Supply Station, Liupanshui Shuicheng Power Supply Bureau of Guizhou Power Grid Corporation, Liupanshui 553000, China
  • Received:2021-04-02 Online:2021-12-01 Published:2021-12-02

摘要: 为避免风电输出功率的波动性和不确定性对电网运行的影响, 提出一种改进变分模态分解算法和集成门 控循环神经网络的组合模型应用于风电场的短期功率预测。 该方法首先针对单个 GRU(Gated Recurrent Unit) 模型预测精度低, 预测不稳定的问题, 利用 Stacking 算法进行融合并建立 SGRU( Stacking-GRU) 预测模型。 其次针对 VMD(Variational Modal Decomposition)分解算法中常见的端点效应问题, 采用 GRU 延拓法进行处理, 并引入 ALO(Ant Lion Optimizer) 算法对模型中的超参数进行寻优建立 GAVMD(GRU-ALO-VMD) 分解模型。 风功率数据先经过 GAVMD 模型的分解降低了数据的不平稳性, 改善了预测模型的训练难度, 之后利用 SGRU 模型对分解后的 IMF( Intrinsic Mode Function)分量进行预测并重构, 最终得到原始风功率数据的预测值。 以 实际风电场样本数据对模型的性能进行验证, 仿真结果表明, 基于 GAVMD-SGRU 的组合预测模型相比于其他 模型在不同季节内能将平均绝对百分比误差指标维持在 6% 以内, 满足电力系统对风电调度的要求。

关键词: GRU 神经网络 , Stacking 集成算法 , 变分模态分解 , 端点效应 , 风功率预测

Abstract: In order to avoid the influence of the fluctuation and uncertainty of wind power output on power grid operation, a combined algorithm of improved variational modal decomposition algorithm and integrated gated cyclic neural network is proposed for the short-term power prediction of wind farm. Firstly, aiming at the problems of low prediction accuracy and unstable prediction of single GRU(Gated Recurrent Unit) model, the stacking model is used for fusion and the SGRU(Stacking-GRU) prediction model is established. Secondly, for the common endpoint effect problem in VMD (Variational Modal Decomposition)decomposition algorithm, GRU extension method is used, and ALO ( Ant Lion Optimizer ) algorithm is introduced to optimize the super parameters in the model to establish GAVMD(GRU-ALO-VMD) decomposition model. Firstly, the wind power data is decomposed by GAVMD model, which reduces the instability of the data and improves the training difficulty of the prediction model. Then, the SGRU model is used to predict and reconstruct the decomposed IMF (Intrinsic Mode Function) component, and finally the predicted value of the original wind power data is obtained. The performance of the model is verified by the actual wind farm sample data. The simulation results show that the combined forecasting model based on GAVMD-SGRU maintains the average absolute percentage error index within 6% in different seasons compared with other models, which meets the requirements of the power system for wind power dispatch.

Key words: gated recurrent unit ( GRU) neural network, stacking ensemble algorithm, variational mode decomposition, endpoint effect, wind power prediction

中图分类号: 

  • TP183