吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (1): 124-130.

• • 上一篇    下一篇

基于并行小波算法的多模态数据近似匹配模型构建 

 刘丽丽   

  1. 黑龙江中医药大学 药学院, 哈尔滨 150036
  • 收稿日期:2022-11-24 出版日期:2024-01-29 发布日期:2024-02-04
  • 作者简介:刘丽丽(1992— ), 女, 哈尔滨人, 黑龙江中医药大学助教, 主要从事高等数学和线性代数研究, ( Tel)86-18845070153 (E-mail)2605695574@ qq. com
  • 基金资助:
    黑龙江省自然科学基金资助项目(TD2018D003) 

Construction of Multimodal Data Approximate Matching Model Based on Parallel Wavelet Algorithm

LIU Lili   

  1. School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150036, China
  • Received:2022-11-24 Online:2024-01-29 Published:2024-02-04

摘要: 针对近似匹配过程易受数据冗余性、 异构成分等的影响, 提出了基于并行小波算法的多模态数据近似 匹配模型。 该模型首先采用并行小波算法剔除多模态数据中的噪声, 避免噪声对匹配过程产生影响; 其次 采用张量分解的聚类算法将不同相似度的数据划分到不同类簇中, 以消除不同类簇的数据差异度; 最后将预 处理后的数据输入到基于空间方向近似性的数据匹配模型中, 通过计算参考数据与待匹配数据之间的空间 方向近似度、 编辑距离完成多模态数据的近似匹配。 实验结果表明, 所提方法的匹配查准率高、 查全率高、 匹配时间短。 

关键词: 双输入-输出的并行结构, 数据差异度, 张量分解, 空间方向近似性, 匹配相似度

Abstract: Approximate matching is an indispensable link in the normal use of multimodal data technology, but the process of approximate matching is vulnerable to data redundancy, heterogeneous components and other issues. Firstly, parallel wavelet algorithm is used to eliminate the noise in multimodal data to avoid the impact of noise on the matching process. Secondly, tensor decomposition clustering algorithm is used to divide the data with different similarity into different clusters to eliminate the data difference of different clusters. Finally, the preprocessed data is input into the data matching model based on spatial direction approximation, The approximate matching of multimodal data is completed by calculating the spatial direction approximation and editing the distance between the reference data and the data to be matched. The experimental results show that the proposed method has high matching precision, high recall and short matching time. 

Key words: dual input output parallel architecture, data difference, tensor decomposition, spatial direction approximation, matching similarity

中图分类号: 

  • TP312