吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (1): 162-167.

• • 上一篇    下一篇

电力人工智能指标算法模型多场景鲁棒性评价方法 

黄 云1,2 , 董天宇1   

  1. 1. 国网信通产业集团 安徽继远检验检测技术有限公司评估实验中心, 合肥 230031; 2. 合肥工业大学 计算机与信息学院, 合肥 230031
  • 收稿日期:2022-08-29 出版日期:2024-01-29 发布日期:2024-02-04
  • 作者简介: 黄云(1983— ), 男, 安徽涡阳人, 国网信通产业集团安徽继远检验检测技术有限公司评估实验中心工程师, 主要从事 网络安全攻防、 信息安全风险评估、 信息安全检测等研究, (Tel)86-13810597889(E-mail)changlianxi4589@ 163. com
  • 基金资助:
     国家电网有限公司大数据中心自建科技基金资助项目(269954Y) 

Multi-Scenario Robustness Evaluation Method of Power Artificial Intelligence Index Algorithm Model 

HUANG Yun 1,2 , DONG Tianyu 1   

  1. 1. Anhui Jiyuan Inspection and Testing Technology Company Limited, Evaluation Experiment Center, State Grid Xintong Industry Group, Hefei 230031, China; 2. School of Computer Science and Information, Hefei University of Technology, Hefei 230031, China
  • Received:2022-08-29 Online:2024-01-29 Published:2024-02-04

摘要:  为解决传统的模型鲁棒性评价方法存在描述相符性较低, 难以获得精准的场景匹配数据的不足, 提出了 一种新的电力人工智能指标算法模型多场景鲁棒性评价方法。 针对多场景数据进行提取, 设置局部空间的多 场景数据扰动范围区间, 控制空间范围的区间移动距离, 在区间范围内预测样本点的数据获取结果。 输入算法 模型的基础特征参数, 在输入参数维度提高的同时选择多场景数据获取距离范围数值, 根据选取的数值进行初 始数据评估操作。 针对不确定的控制目标的特点进行数据基础分析, 确保系统处于稳定状态中, 并保持系统的 动态特征, 有效分析不同的系统参数之间的差异, 构建偏差值范围, 判断算法模型的多场景特点, 实现数据评 价。 实验结果表明, 该电力人工智能指标算法模型多场景鲁棒性评价方法能很好地变换采样点坐标, 确保多场 景采样点数据图像具备不变性, 从而克服场景数据旋转敏感问题, 提高响应速度。 与传统评价方法相比, 笔者 提出的评价方法在干扰鲁棒性和仿射形变鲁棒性等方面具有较强的优势。

关键词: 电力人工, 人工智能, 指标算法, 模型多场景, 鲁棒性评价, 评价方法 

Abstract: To address the shortcomings of traditional model robustness evaluation methods, such as low description consistency and difficulty in obtaining accurate scene matching data, a new power artificial intelligence index algorithm model of multi scenario robustness evaluation method is proposed. The multi scene data is extracted, the disturbance range interval of multi scene data in local space is set, the interval movement distance of spatial range is controlled, and the data acquisition results of sample points within the interval range are predicted. The basic feature parameters of the algorithm model are input, the multiple scene data is selected to obtain distance range values while increasing the input parameter dimension, and the initial data evaluation operations are performed based on the selected values. Based on the characteristics of uncertain control objectives, conduct data foundation analysis to ensure that the system is in a stable state and maintains its dynamic characteristics. Effectively analyze the differences between different system parameters, construct a range of deviation values, judge the multi scenario characteristics of the algorithm model, and achieve data evaluation. The experimental results show that the multi scenario robustness evaluation method of the electric power artificial intelligence index algorithm model can effectively transform the coordinates of sampling points, ensure the invariance of multi scenario sampling point data images, overcome the problem of scene data rotation sensitivity, and improve response speed. Compared with traditional evaluation methods, the proposed evaluation method has strong advantages in interference robustness and affine deformation robustness. 

Key words:  , electric power labor, artificial intelligence, index algorithm, model multi-scenario, robustness evaluation, evaluation method

中图分类号: 

  • TP39