吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (2): 200-209.

• • 上一篇    下一篇

基于 EM-KF 算法的微地震信号去噪方法

李学贵1a,1b,1c , 张 帅1a,1c , 吴 钧2 , 段含旭1a,1c , 王泽鹏1a,1c   

  1. 1. 东北石油大学 a. 计算机与信息技术学院; b. 人工智能能源研究院; c. 黑龙江省石油大数据与智能分析实验室, 黑龙江 大庆 163318; 2. 大庆油田有限责任公司 勘探开发研究院, 黑龙江 大庆 163712
  • 收稿日期:2023-03-01 出版日期:2024-04-10 发布日期:2024-04-12
  • 作者简介:李学贵(1982— ), 男, 山东临沂人, 东北石油大学副教授, 博士, 硕士生导师, 主要从事深度学习、 智能物探和大数据 技术等研究, (Tel)86-18944583796(E-mail)lixg82@ 163. com
  • 基金资助:
    国家自然科学基金资助项目 (U21A2019); 中国石油重大科技专项基金资助项目(2021ZZ10); 黑龙江省揭榜挂帅科技攻关 基金资助项目(DQYT-2022-JS-750); 黑龙江省自然基金联合引导基金资助项目(LH2022F008) 

Microseismic Signal Denoising Method Based on EM-KF Algorithm

LI Xuegui 1a,1b,1c , ZHANG Shuai 1a,1c , WU Jun 2 , DUAN Hanxu 1a,1c , WANG Zepeng 1a,1c   

  1. 1a. School of Computer and Information Technology; 1b. Artificial Intelligence Energy Research Institute; 1c. Heilongjiang Key Laboratory of Big Data and Intelligent Analysis of Petroleum, Northeast Petroleum University, Daqing 163318, China; 2. Exploration and Development Research Institute, Daqing Oilfield Company Limited, Daqing 163712, China
  • Received:2023-03-01 Online:2024-04-10 Published:2024-04-12

摘要: 针对微地震信号能量较弱, 噪声较强, 使微地震弱信号难以提取问题, 提出了一种基于 EM-KF (Expectation Maximization Kalman Filter)的微地震信号去噪方法。 通过建立一个符合微地震信号规律的状态 空间模型, 并利用 EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解, 结合卡尔曼滤波, 可以有 效地提升微地震信号的信噪比, 同时保留有效信号。 通过合成和真实数据实验结果表明, 与传统的小波滤波和 卡尔曼滤波相比, 该方法具有更高的效率和更好的精度。 

关键词: 微地震, EM 算法, 卡尔曼滤波, 信噪比 

Abstract: Microseismic monitoring technology has been widely used in unconventional oil and gas development. The microseismic signal has weak energy and strong noise, which makes the follow-up work difficult and requires high-precision and accurate data. To solve the problem of extracting weak microseismic signals, an EM-KF (Expectation Maximization Kalman Filter)-based method is proposed for denoising microseismic signals. By establishing a state space model that conforms to the laws of microseismic signals and using the EM(Expectation Maximization) algorithm to obtain the optimal solution of the parameters for the Kalman filter, the signal-to-noise ratio of microseismic signals can be effectively improved while retaining the effective signals. The experimental results of synthetic data and real data show that this method has higher efficiency and better accuracy than traditional wavelet filtering and Kalman filtering.

Key words: microseism, expectation maximization (EM) algorithm, Kalman filter, signal to noise ratio

中图分类号: 

  • TP391