吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (3): 550-558.
邹彦艳, 田年年
ZOU Yanyan, TIAN Niannian
摘要: 针对原始的流形学习算法仅利用其光谱特征而没有利用空间信息的问题, 提出了基于监督的空谱联合的局部保持投影算法(SS-LPP: Spatial-Spectral Locality Preserving Projections)。 该算法首先使用加权均值滤波算法对数据集进行滤波, 将空间信息与光谱信息进行融合并消除噪点的干扰, 增加同类数据的相关性。 然后利用标签集构造类内图和类间图, 并通过其可有效提取鉴别特征和改善分类性能。 在 Salinas 和 PaviaU 数据集上对该算法的有效性进行验证。 实验结果表明, 该算法能有效提取数据特征, 并提高分类的准确性。
中图分类号: