吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 889-893.

• • 上一篇    下一篇

基于多维特征的通信网络异常数据识别算法

 姜 宁    

  1. 延安大学数学与计算机科学学院,陕西延安716000
  • 收稿日期:2023-07-27 出版日期:2024-10-21 发布日期:2024-10-21
  • 作者简介:姜宁(1983— ), 女, 陕西临潼人, 延安大学实验师, 主要从事网络安全研究, (Tel)86-15891412596(E-mail) wangyuanyuan716@163. com。
  • 基金资助:
    教育部供需对接就业育人基金资助项目(20230106536) 

Algorithm for Identifying Abnormal Data in Communication Networks Based on Multidimensional Features 

JIANG Ning    

  1. College of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China
  • Received:2023-07-27 Online:2024-10-21 Published:2024-10-21

摘要: 为解决现有方法存在的异常数据识别精度较低的问题,提出一种基于多维特征的通信网络异常数据识别 算法。 调整粒子群优化算法中粒子的当前速度和位置,获取通信网络多维数据样本;通过数据挖掘中的聚类 分析法提取数据特征,确定密度指标,获取数据多维特征;将提取的多维特征引入深度信念网络中进行识别, 根据特征频谱幅值变化,实现对通信网络数据异常识别。 实验结果表明,该算法能有效识别通信网络异常数据 特征, 具有较高的识别准确性。 

关键词: 多维特征, 数据识别, 粒子群优化算法, 聚类分析, 深度信念网络 

Abstract:  To solve the problem of low accuracy in identifying abnormal data in existing methods. An abnormal data recognition algorithm for multi-dimensional feature-based communication network is proposed. The current speed and position of particles in particle swarm optimization algorithm is adjusted to obtain multi-dimensional data samples of communication network. Data features are extracted through clustering analysis in data mining, determining density indicators, and obtaining multidimensional features of the data. The extracted multidimensional features are Introduced into the deep belief network for recognition, and anomaly recognition of communication network data is achieved based on changes in feature spectrum amplitude. The experimental results show that the algorithm can effectively identify abnormal data features in communication networks and has high recognition accuracy. 

Key words: multidimensional features, data identification, particle swarm optimization, cluster analysis, deep belief network 

中图分类号: 

  • TP391