吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (6): 1155-1163.

• • 上一篇    下一篇

基于属性特征的英语口语准确翻译系统

蒲婷艳   

  1. 广州华商学院外国语学院,广州511300
  • 收稿日期:2023-11-02 出版日期:2024-12-23 发布日期:2024-12-23
  • 作者简介:蒲婷艳(1985— ), 女, 湖南永州人, 广州华商学院讲师,主要从事翻译理论与实践研究, (Tel)86-13631454753(E-mail) putingyan_2023@126. com。
  • 基金资助:
    广州华商学院校内科研导师制基金资助项目(2022HSDS10)

Accurate English Oral Translation System Based on Attribute Features

PU Tingyan   

  1. College of Foreign Languages, Guangzhou Huashang College, Guangzhou 511300, China
  • Received:2023-11-02 Online:2024-12-23 Published:2024-12-23

摘要: 对为避免语言含义对英语口语翻译结果产生干扰,提高英语口语翻译准确性的问题,提出基于属性 特征的英语口语准确翻译系统。 该系统通过分析输入数据变量,提取口语语义特征参数,其可以捕捉到词汇和 表达方式之间的差异,提高翻译的准确性。 使用变分自编码器捕获特征的有效信息,从而获得英语口语语义 匹配结果。 对口语语义匹配进行编码和解码, 并根据参数设置翻译规则, 以识别口译歧义词参数, 并利用 CBOW(Continuous Bag-of-Words)模型识别评定参数。 设立了句式复杂分组翻译规则, 并根据规则进行语义翻译 连接, 从而形成准确的英语口语翻译结果。 实验结果表明,设计的英语口语翻译系统具有较高的翻译准确率, 能实现准确的英语口语翻译,说明所研究的翻译系统能满足英语口语翻译高精度翻译的要求。

关键词: 属性特征, 英语口语翻译, CBOW模型, 语义特征, 变分自编码器, 分组翻译规则

Abstract: In order to avoid interference of language meaning on English oral translation results and improve the accuracy of English oral translation, an accurate English oral translation system based on attribute features is proposed. The system extracts oral semantic feature parameters by analyzing input data variables. Semantic feature parameters can capture differences between vocabulary and expression methods, improving translation accuracy. Variational autoencoders is used to capture effective information of features and obtain English spoken semantic matching results. Oral semantic matching is encoded and decoded, and translation rules are set based on parameters to identify interpreting ambiguous word parameters, and CBOW(Continuous Bag-of-Words) model is used to identify and evaluate parameters. Translation rules for complex sentence structures are established and they are connected through semantic translation based on these rules, forming accurate English oral translation results. The experimental results show that the designed English oral translation system has high translation accuracy and can achieve accurate English oral translation. Therefore, it indicates that the studied translation system can meet the requirements of high-precision English oral translation.

Key words: attribute characteristics, english oral translation, continuous bag-of-words ( CBOW) model, semantic features, variational autoencoder, group translation rules

中图分类号: 

  • TP273