吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 776-782.

• • 上一篇    下一篇

基于深度学习的社区应急管理需求感知系统 

王晓林1, 黄光强2, 何钢2, 武煜博2, 郭东2   

  1. 1. 长春市城市科学研究所,长春130041;2. 吉林大学 计算机科学与技术学院,长春130012
  • 收稿日期:2024-11-22 出版日期:2025-08-15 发布日期:2025-08-15
  • 作者简介:王晓林(1967—), 男, 长春人, 长春市城市科学研究所副研究员, 主要从事智慧城市研究, (Tel)86-13578675158 (E-mail)728979858@ qq. com; 郭东(1975— ), 男, 吉林德惠人, 吉林大学教授, 博士, 主要从事网络安全、 智慧城市与大数据研究,(Tel)86-13341581599(E-mail)guodong@ jlu. edu. cn。
  • 基金资助:
    吉林省科技发展计划重点研发基金资助项目(20230203037SF) 

Demand Perception System of Community Emergency Management Based on Deep Learning

 WANG Xiaolin1, HUANG Guangqiang2, HE Gang2, WU Yubo2, GUO Dong2   

  1. 1. Urban Science Research Institute of Changchun City, Changchun 130041, China; 2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2024-11-22 Online:2025-08-15 Published:2025-08-15

摘要:

在疫情灾害等场景下的社区应急管理中,传统方法无法快速精确捕捉社区的需求动态。为此,提出一种结合多模态大语言模型和YOLOv8(You Only Look Once version 8)的智能感知系统。该系统综合分析社交媒体文本数据和社区监控视频流,以实时识别社区公共服务需求。实验结果显示,系统在需求识别和异常检测方面 表现出高准确性和响应速度。该系统提升了应急管理中公共服务的响应能力,为智慧城市建设提供了有力技术支持。

关键词: 应急管理, 多模态大语言模型, 目标检测, 智慧城市 

Abstract: In community emergency management during scenarios such as pandemic disasters, traditional methods can not quickly and accurately capture community dynamics. Therefore, an intelligent perception system combining MLLMs(Multimodal Large Language Models) and YOLOv8(You Only Look Once version 8) is proposed. The system comprehensively analyzes textual data from social media and community video surveillance streams to identify changes in community public service needs in real-time. Experimental results demonstrate high accuracy and responsiveness in demand recognition and anomaly detection. This enhances the responsiveness of public services in emergency management and provides strong technical support for smart city development.

Key words: emergency management, multimodal large language models, object detection, smart city

中图分类号: 

  • TP391