吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 807-813.

• • 上一篇    下一篇

基于灰狼算法优化核极限学习机的虚假数据注入攻击增量检测

 王惠洁   

  1. 温州商学院信息工程学院,浙江温州325035
  • 收稿日期:2023-09-07 出版日期:2025-08-15 发布日期:2025-08-15
  • 作者简介:王惠洁(1995—), 女, 浙江温州人, 温州商学院助教, 主要从事数据挖掘、机器学习研究, (Tel)86-15167196550 (E-mail)renzonglai2023@163. com。
  • 基金资助:
    浙江省自然科学基金资助项目(LZ16B020005)

Incremental Detection of False Data Injection Attacks in Kernel Extreme Learning Machines Based on Grey Wolf Algorithm Optimization

 WANG Huijie   

  1. School of Information and Technology, Wenzhou Business College, Wenzhou 325035, China
  • Received:2023-09-07 Online:2025-08-15 Published:2025-08-15

摘要:

由于在实施虚假数据注入攻击检测时,若检测模型的检测精度较差,将影响虚假数据注入攻击检测的 检测效果,为有效提升检测模型的检测精度,提出基于灰狼算法优化核极限学习机的虚假数据注入攻击增量检测。估计电力系统状态,分析虚假数据注入攻击行为,并基于核极限学习机建立虚假数据注入攻击增量检测模型, 使用灰狼算法对模型进行优化处理;最后将采集的电力系统状态数据的归一化结果作为模型输入数据, 通过优化后的模型实现电力系统虚假数据注入攻击在增量变化下的精准检测。实验结果表明,采用该方法 进行虚假数据注入攻击检测,可以得到较好的检测效果和较高精度的检测结果。

关键词: 核极限学习机, 灰狼优化算法, 电力系统, 虚假数据注入攻击, 优化处理

Abstract:

When detecting false data injection attacks, if the detection accuracy of the detection model is poor, it will directly affect the detection effect of false data injection attacks. In order to effectively improve the detection accuracy of the detection model, the incremental detection of false data injection attacks based on the grey wolf algorithm is proposed to optimize the kernel extreme learning machine. The state of power system is estimated, and the attack behavior of false data injection is analyzed. On this basis, an incremental detection model of false data injection attack is established based on kernel extreme learning machine, and the model is optimized by grey wolf algorithm. Finally, the normalized results of the collected power system state data are used as the model input data, and the accurate detection of false data injection attacks in power system under incremental changes is realized through the optimized model. The experimental results show that using this method to detect false data injection attacks can get better detection effect and high precision results.

Key words: nuclear extreme learning machine, grey wolf optimization algorithm, electric power system, false data injection attack, optimization treatment 

中图分类号: 

  • TP399